Argonne°

NATIONAL LABORATORY

Scalable Tools for Analysis of Massive Remote-Sensing Datasets on

High-Performance Computers

Richard Tran Mills, Argonne National Laboratory
Vamsi Sripathi, Intel Corporation
Jitendra Kumar, Oak Ridge National Laboratory
Sarat Sreepathi, Oak Ridge National Laboratory
Forrest M. Hoffman, Oak Ridge National Laboratory
William W. Hargrove, USDA Forest Service Southern Research Station

US-IALE Annual Meeting, Fort Collins, CO
Fort Collins, CO — April 8, 2019

Introduction

» Increasing availability of high-resolution geospatiotemporal data sets from varied sources:
» Observatory networks
» Remote sensing platforms
»> Computational Earth system models
» New possibilities for knowledge discovery and mining of geoscience data sets fused from disparate
sources.

> Traditional tools impractical for analysis/synthesis of data sets this large: Need new approaches to
utilize complex memory hierarchies and high levels of available parallelism in state-of-the-art
high-performance computing platforms.

» We have adapted pKluster—an open-source tool for accelerated k-means clustering we use for
many geospatiotemporal applications—to effectively utilize state-of-the art multi- and manycore
processors, such as the second-generation Intel Xeon Phi (“Knights Landing") processor, as well
as GPGPUs.

5 /a4

Scalable k-means Clustering with pKluster
Our distributed-memory clustering code has a long history...

sl S0

Figure: Originally developed in 1996-1997 for use on the Stone Soupercomputer, a very early Beowulf-style
cluster constructed entirely out of surplus parts (see “The Do-It-Yourself Supercomputer”, Scientific American,
265 (2), pp. 72-79, 2001.) 9.0

drawn ecoregionalizations

Original motivation: Replacing hand

Level 11l Ecoregions o(f the ggptinental United States

Quantitative Ecoregionalization through Multivariate Spatio(-Temporal) Clustering
Geographic Space

Data Space

Descriptive

variables become

axes of the data

space. Map cell
values become
coordinates for
the respective

axis.

—

Perform multivariate Group map cells with
non-hierarchical statistical similar values for these

descriptive variables.

clustering.

A6| E6

D5| A8| G7|

H1| E4| B7| G8

F2| D6| c6] F8
17 2 3 4
Cluster Bins

Reassemble map
cells in geographic
space and color
them according
to their cluster
number.

-

05 329/

Quantitative Ecoregionalization through Time: Sampling Network Design

S S
ot PP ot e PP
(a) 10 ecoregions, present (2000-2009) (b) 10 ecoregions, future (2090-2099)

Figure: Geospatiotemporal clustering of a combination of observational data and downscaled general circulation
model results projects dramatic shifts in location of Alaska ecoregions using downscaled 4 km GCM results.
Arctic tundra projected to be at 0.78% of current extent by 2099. DOI: 10.1007/s10980-013-9902-0.

2014 US-IALE Outstanding Paper in Landscape Ecology.

6 /24

MODIS NVDI-based phenoregionalization

S| e | s [e [| S e[S
B N\ |
-/
— — -
—
=
1\
e N AN
a] L EVAN
—_— G e e
N N AN A A~
—_— —
e~~~
o <@ =, <z

GSMNP LiDAR-derived canopy structure classification

[1]13.55% [2]13.96% [3]12.42% [4]5.01% [515.81%
e e e e w
3 3 % % %
£ £ B B %
2% i 24 F H
220 220 22 220 220
B 2 3 5 5
10 20 30 0 10 20 30 Dﬂ 10 20 30 &« Du 10 20 30 A« o 10
ot orie orrorie orrorie Corrrore orrrore
(6] 5.29% (7)2.35% (8] 2.82% (9] 2.00% 10] 4.83%
e e _ e w
5 5 % % 25
z4 z 4 £ £ £
H £) in o
220 £ 2 220 22
3 3 3 3
DD 10 20 30 00 10 20 30 10 20 30 4« 10 20 30 &« DO 10 20 30
ottt ottt otmote S ctmote ot rote
111 260% 21 s00% 511229 najoare 51 292%
e e e e w
5 3 % % %
g3 £% £ £ %
2% 4 £ F :
220 220 220 220 2
B 2 6] g
10 20 30 00 10 20 30 Du 10 20 30 A&« 10 20 30 AC 10 20 30
otrorie otrorie otmorie Cotrrore ot
(16] 5.42% (17 2.94% (18] 1.64% 19] 3.83% [20]1.73%
e w e e e
% % 2% % %
i B B 5 i
T £ £ i o
£ £ £ LX) 20
3 3 e | B m
DD 10 20 30 10 20 30 Oﬂ 10 20 30 4 0ﬂ 10 20 4« 10 20 30
ot ot ot ot ot ot ot
N . - 1 [21]1.82% [22]1.90% [23]2.49% [24]3.79% [25]3.25%
Figure: Map (above) showing the 30 most-different
H H ' Es Es Es0 Eso Eso
classes of vegetation canopy structure, as identified by 3 % B < <
- : £ £ £ o o
k-means clustering (right) for the Great Smoky £n £n £ 2 2n
. . B H
i o T O T
Mountains National Park.
[26] 4.70% [27]5.82% [28] 4.31% 129]3.53% [30] 3.40%
_w _» e e e
% % 2% €% €%
i % B B %
T T] in oH]
£ EEY 22 20 20
3 3 b 5 5
Dn 10 20 30 OD 0 20 30 0 10 20 30 4 0 10 20 30 4 Du 10 20 30
ot ot orrorie orore orrrore ot

o =2 = = a0y

Scalable k-means Clustering with pKluster: Parallel Computers Have Evolved!

» When pKluster was initially written, on-node parallelism was virtually nonexistent on commodity
PCs; focus was purely on distributed-memory parallelism (i.e., Message Passing Interface—MPI).
» Modern HPC compute nodes increasingly feature high degrees of on-node parallelism:

» Modern CPUs feature large numbers of compute cores, increasing reliance on SIMD (vector
instructions).
» Many new supercomputers are concentrating almost all power in GPU “accelerators”.

Figure: New School
Figure: O. G.

0 /924

. ___
Manycore Computing Architectures

» In recent years, the number of compute cores and hardware threads has been dramatically
increasing.

» Seen in GPGPUS, “manycore” processors such as the Intel Xeon Phi, and even on standard server
processors (e.g., Intel Xeon Skylake).
» There is also increasing reliance on data parallelism /fine-grained parallelism.

» Current Intel consumer-grade processors have 256-bit vector registers and support AVX2 instructions.
» Second-generation Intel Xeon Phi processors and Intel Xeon (Skylake and beyond) server processors
have 512-bit vectors/AVX512 instructions.

2x16 X4
1x4 DMl wvcoram mcoram

At left, “Knights Landing” (KNL) Xeon Phi processor:

. . P> Up to 36 tiles interconnected via 2D mesh
> o » Tile: 2 cores + 2 VPU/core + 1 MB L2 cache
E 36 Tiles E P Core: Silvermont-based, 4 threads per core, out-of-order execution
E co;\gehcnt:sdhby SORME E » Dual issue; can saturate both VPUs from a single thread
o Interconnect n » 512 bit (16 floats wide) SIMD lanes, AVX512 vector instructions
E E » High bandwidth memory (MCDRAM) on package: 490+ GB/s

. bandwidth on STREAM triad?

P Powers the NERSC Cori and ALCF Theta supercomputers

MCDRAM MCDRAM MCDRAM MCDRAM

10 / 24

OLCF Summit Supercomputer

i - System totals

#]'. » ~ 200 PFlop/s theoretical peak
b 143 PFlop/s LINPACK—#1 in TOP500

» 4,608 compute nodes

Node configuration

» Compute:
> Two IBM Power9 CPUs, each 22 with
cores, 0.5 DP TFlop/s
> Six NVIDIA Volta V100 GPUs, each with
80 SMs—32 FP64 cores/SM, 7.8 DP
TFlop/s

» Memory:

»> 512 GB DDR4 memory

> 96 (6 x 16) GB high-bandwidth GPU
memory

»> 1.6 TB nonvolatile RAM (1/0 burst buffer)

Almost all compute power is in GPUs!

11 /24

CPU Benchmarking Platforms and Problem

Performance benchmarking platforms:

l

Intel Xeon E5-2697 v4 |

Intel Xeon Gold 6148

Intel Xeon Phi 7250

l

Code Name Broadwell (BDW) Skylake (SKX) Knights Landing (KNL)
Sockets 2 2 1

Cores 36 40 68

Threads 72 80 272

CPU clock 2.3 GHz 2.4 GHz 1.4 GHz
High-bandwidth memory - - 16 GB

DRAM 128 GB © 2400 MHz 192 GB © 2666 MHz 98 GB © 2400 MHz
Instruction set architecture AVX2 AVX-512F,DQ,CD,BW,VL AVX-512F,PF,ER,CD
Theoretical peak flops (FP32 / FP64) | 2649 / 1324 6144 / 3072 6092 / 3046

» SKX and KNL double the SIMD width of BDW (256 to 512 bits)

» SKX and KNL have similiar peak flops; KNL more dependent on SIMD and

Benchmark problem: GSMNP LiDAR clustering

» 1.5 million observations
» 74 dimensions
» k = 2000 clusters

thread parallelism

12 /24

Parallel k-means clustering algorithm

k-means clustering

Goal: Partition data into k clusters, such that centroid
¢ minimizes the total distance D; = > d(¢j, a) to
points a in cluster P;.

Iterative calculation: Given initial partition, find
centroid of each cluster and repartition according to
closest centroid (essentially Lloyd's algorithm, or voronoi
relaxation).

Parallel implementation in pKluster
» Centralized master-worker paradigm

> Start from some initial centroids (chosen offline)
> Master:

» Broadcasts centroids and aliquot assignment to
workers

» Collects new cluster assignments from workers

» Recomputes centroids

» Workers, for an assigned aliquot:

» Compute observation-to-centroid distances
> Assign each observation to closest centroid

0.9

0.7

0.6

0.5

0.3

0.2

0.1

Iteration #0

0.1 0.2 0.3 04 05 06 07 08 09
(=)

Figure: Illustration of k-means iteration for
k = 3. https://commons.wikimedia.org/
wiki/File:K-means_convergence.gif

13 /24

https://commons.wikimedia.org/wiki/File:K-means_convergence.gif
https://commons.wikimedia.org/wiki/File:K-means_convergence.gif

Accelerated k-means clustering

» Classical k-means actually performs far more distance calculations than required!

» Use the triangle inequality to eliminate unnecessary point-to-centroid distance computations based
on the previous cluster assignments and the new inter-centroid distances.

» Reduce evaluation overhead by sorting inter-centroid distances so that new candidate centroids c¢;
are evaluated in order of their distance from the former centroid ¢;. Once the critical distance
2d(p, ¢;) is surpassed, no additional evaluations are needed, as the nearest centroid is known from
a previous evaluation.

d(i,j) < d(p, i)+ d(p,J)

d(I7J) - d(P: I) S d(p1j

if d(i,j) > 2d(p,) :
d(p,j) = d(p, i)
without calculating the distance d(p,j)

~—

14 /24

Accelerated k-means clustering

» Classical k-means actually performs more distance calculations than required!

» Use the triangle inequality to eliminate unnecessary point-to-centroid distance computations based
on the previous cluster assignments and the new inter-centroid distances.

» Reduce evaluation overhead by sorting inter-centroid distances so that new candidate centroids c¢;
are evaluated in order of their distance from the former centroid ¢;. Once the critical distance
2d(p, c;) is surpassed, no additional evaluations are needed, as the nearest centroid is known from

a previous evaluation.

(s

CLUSTER_TIMER

0.8

0.6

0.4

Decreasing Time per lteration, Accelerated k-means Method

I I
0 20 40 60 80 100 120
Iteration number

15 /24

Baseline (accelerated k-means) Performance

Wall Clock Time (sec)

220

200

180

160

140

120

100

80

60

40

Performance of k-means with k=2000

Total Time

BDW(MPI=36) SKX(MPI=40) KNL(MPI=68)

» 1.3X speedup on SKX vs.
BDW

» Significant slowdown
(2.2X) on KNL vs. BDW

16 /24

Effective Use of Hyperthreads

» Using a pure MPI approach (one MPI rank per core), performance of the accelerated k-means
clustering approach is surprisingly poor on the “Knights Landing” (KNL) processor.

» Using two MPI ranks per core slightly decreases time in the actual clustering calculation, but
slightly increases total time due to greater overhead in master-worker coordination.

» This suggests that using more available hardware threads can improve performance on KNL, if we
can avoid increasing master-worker overhead.

17 /24

. __
Performance Optimizations: OpenMP Parallelism on KNL

» Hybrid MPI-OpenMP
version of distance

KNL(68C/272T): MPI Vs MPI+OpenMP calculation function
850 Total Time effectively utilizes FMA
Compute Time mmm— units and reduces the

300 bottleneck on rank 0.
_ o8 » Use dynamic loop
(a:; scheduling to smooth
g 200 load imbalance due to
£ triangle inequality (many
-é observations in an aliquot
2 150 . .
o might skip
§ 100 point-to-centroid distance

calculation).

» Pin each MPI to a KNL
“tile” and spawn 8
threads (4 threads per

68 MPI (Baseline) 272 MPI (Baseline) 34 MPI + 8 OMP core),

50

» 2.8X improvement.

18 /24

.
Performance Optimizations: OpenMP Parallelism on BDW and SKX

BDW (36C/72T): Impact of HyperThreading SKX (40C/80T): Impact of HyperThreading

100 80
‘ ‘ Total Time mmm— Total Time
95 | eieeeiiieeiieeeeee.....|_Compute Time e | | 75 L ... | Compute Time mmmm | |
) o
< @
2 <
o @
£ £
5 =
x x
] S
2 2
o o
] K]
= =
36 MPI 72 MPI 9 MPI + 18 MPI + 36 MPI + 40 MPI 80 MPI 10MPI+ 20 MPI+ 40 MPI +
(Baseline) (Baseline) 8 OMP 4 OMP 2 OMP (Baseline) (Baseline) 8 OMP 4 OMP 2 OMP
(a) Intel Xeon E5-2697 v4 (“Broadwell”) (b) Intel Xeon Gold 6148 (“Skylake”)

Figure: Comparison of times to cluster the GSMNP LiDAR data set with k = 2000 on the Broadwell (BDW)
and Skylake (SKX) Xeon processors for different numbers of MPI ranks and OpenMP threads.

19 /24

Improving computational intensity

» Can achieve greater computational intensity of the observation—centroid distance calculations by
expressing the calculation in matrix form:

» For observation vector x; and centroid vector z, the squared distance between them is

2
D; = s~ 3"

> Via binomial expansion, Dj; = lIxi112 + ||ZJH2 —2x; - zj.

» The matrix of squared distances can thus be expressed as D = X1T7 + 1zT — 2XT7Z, where X and Z
are matrices of observations and centroids, respectively, stored in columns, X and Z are vectors of the
sum of squares of the columns of X and Z, and 1 is a vector of all 1s.

> Above expression can be calculated in terms of a level-3 BLAS operation (xGEMM), followed by
two rank-one updates (xGER, a level-2 operation).

» We use highly optimized BLAS implementations from Intel's MKL and NVIDIA cuBLAS to speed
up distance calculations on Xeon Phi and GPGPUs, respectively.

» Distance calculations using above formulation can be dramatically faster than the straightforward
loop over vector distance calculations when many distance comparisons must be made.

» Using the matrix formulation for distance comparisons in early k-means iterations is
straightforward; a more complicated approach we hope to explore is using the matrix formulation
in combination with the acceleration techniques described above, in which only a subset of
observation—centroid distances are calculated.

20 /24

——
BDW vs. KNL, Accelerated (MPI 4+ OpenMP version) vs. Matrix Formulation

Comparison of BDW vs. KNL, accelerated vs. matrix formulation clustering timings > Though B LAS/mat”X formulation
120 T T T T i
KNL hoceleraled performfs many more d.|sta nce
KNL matrix formulation —<— ; calculations, XxGEMM s so

100 L BDW accelerated ¢ 4 .. .
BDW matrix formulation efficient on KNL that it

Z ol] outperforms acceleration scheme
é il for all k; also shows slowest
Soeol = / growth in cost as k increases.

% ' » On BDW, matrix formulation only
o benefits initial iterations (when

many distance comparisons are
required); after that, acceleration

N . . .
0 200 400 600 800 1000 1200 1400 1600 1800 2000 technique results in dramatically
Number of clusters k faster iterations.

21 /24

Performance Improvements Summary

Total Wall Clock Time (sec)

220

200

Comparison of k-means Implementations

BLAS mmmm
P2P-Baseline (MP!) mmmmm
P2P-Optimized (MPI+OMP) Emmmm |~]

BDW SKX KNL

» BLAS formulation yields best

performance on KNL, despite
many more distance calculations
than point-to-point (P2P)
approach using “acceleration”;
slightly slower then P2P distance
calculation on SKX.

Best performance on SKX with
acceleration, though difference
between matrix and accelerated
algorithm is smaller—consistent
with the improved xGEMM
performance on SKX compared to
BDW

Overall performance
Improvements:

> KNL: 3.5X
> BDW: 1.3X
> SKX: 1.4X

79 /74

——
Early Summit Benchmarking Results

The matrix formulation for the distance calculations facilitates using GPUs on Summit:
Replace BLAS calls with NVIDIA cuBLAS calls.

Problem Config Data Size | # Clusters | Nodes | CPU time/iter | GPU time/iter | Speedup

Phenology 2000 25 GB 1000 1 22.69 s 8.47 s 2.67
Phenology 2000-2015 | 395 GB 1000 100 10.60 s 3.59s 2.95

Clustering on Summit: Early Results

CPU time (s) ® GPU time (s)

1node - 25 GB 100 nodes - 395 GB

»
2
8
2
&
Es
5
£
E
g
£
3
3
2

:

Phenology 2000 CONUS Phenology 2000-2015

23 /24

Future Directions

pKluster software development

» Investigate hybrid approach combining accelerated k-means method and matrix formulation within
the same iteration.

» Re-implement a fully distributed, masterless approach in the current version of the code to handle
cases in which master-slave overhead is high (e.g., many cases on KNL).

» Add support for emerging high-capacity, non-volatile memory technologies.

v

Supported open-source release under Apache License 2.0.

» Explore integration with Portable, Extensible Toolkit for Scientific Computation (PETSc), or
reimplementation of our algorithms in PETSc.

Complementary machine-learning techniques

» Sophisticated neural networks becoming more accessible

» High level frameworks like Keras allow easy utilization of libraries such as TensorFlow
» Consumer-grade GPUs are enabling expensive training even without access to expensive HPC
hardware

» Open-source PETSc-based support vector machine (SVM) implementations allow scalable training
of SVMs

4 /04

	0.Plus:
	0.Reset:
	0.Minus:
	0.EndRight:
	0.StepRight:
	0.PlayPauseRight:
	0.PlayRight:
	0.PauseRight:
	0.PlayPauseLeft:
	0.PlayLeft:
	0.PauseLeft:
	0.StepLeft:
	0.EndLeft:
	anm0:
	0.14:
	0.13:
	0.12:
	0.11:
	0.10:
	0.9:
	0.8:
	0.7:
	0.6:
	0.5:
	0.4:
	0.3:
	0.2:
	0.1:
	0.0:

