
Scalable Geospatiotemporal Clustering on Novel Fine-Grained Parallel Computer
Architectures

Richard Tran Mills, Argonne National Laboratory; Vamsi Sripathi, Intel Corporation; Sarat
Sreepathi, Oak Ridge National Laboratory; Jitendra Kumar, Oak Ridge National Laboratory,

Forrest M. Hoffman, Oak Ridge National Laboratory; William W. Hargrove, USDA Forest Service
Southern Research Station

US-IALE Annual Meeting, Chicago, IL

April 11, 2018



Introduction

I Increasing availability of high-resolution geospatiotemporal data sets from varied sources:
I Observatory networks
I Remote sensing platforms
I Computational Earth system models

I Open new possibilities for knowledge discovery and mining of ecological data sets fused from
disparate sources.

I Traditional algorithms/computing platforms impractical for analysis/synthesis of data sets this
large: Need new approaches to utilize complex memory hierarchies and high levels of available
parallelism in state-of-the-art high-performance computing platforms.

I We have adapted pKluster—an open-source tool for accelerated k-means clustering we use for
many geospatiotemporal applications—to effectively utilize state-of-the art multi- and manycore
processors, such as the second-generation Intel Xeon Phi (“Knights Landing”) processor, as well
as GPGPUs.

2 / 20



Scalable k-means Clustering with pKluster
Our distributed-memory clustering code has a long history...

Figure: Originally developed in 1996–1997 for use on the Stone Soupercomputer, a very early Beowulf-style
cluster constructed entirely out of surplus parts (see “The Do-It-Yourself Supercomputer”, Scientific American,
265 (2), pp. 72-79, 2001.)

3 / 20



Quantitative Ecoregionalization and Sampling Network Design

1000 km

(a) 10 ecoregions, present (2000-2009)

1000 km

(b) 10 ecoregions, future (2090-2099)

Figure: Geospatiotemporal clustering of a combination of observational data and downscaled general circulation
model results projects dramatic shifts in location of Alaska ecoregions using downscaled 4 km GCM results.
Arctic tundra projected to be at 0.78% of current extent by 2099. DOI: 10.1007/s10980-013-9902-0.
2014 US-IALE Outstanding Paper in Landscape Ecology.

4 / 20



MODIS NVDI-based phenoregionalization

Phenology Centroid Prototypes (phendump.2000-2012, k = 50)

Cluster 11 Cluster 49 Cluster 15 Cluster 48 Cluster 31 Cluster 16 Cluster 47 Cluster 20 Cluster 35 Cluster 33

Cluster 22 Cluster 24 Cluster 27 Cluster 4 Cluster 42 Cluster 29 Cluster 3 Cluster 38 Cluster 7 Cluster 30

Cluster 1 Cluster 50 Cluster 46 Cluster 9 Cluster 26 Cluster 39 Cluster 14 Cluster 12 Cluster 25 Cluster 8

Cluster 45 Cluster 6 Cluster 18 Cluster 36 Cluster 28 Cluster 37 Cluster 32 Cluster 44 Cluster 34 Cluster 17

Cluster 21 Cluster 2 Cluster 10 Cluster 40 Cluster 5 Cluster 23 Cluster 13 Cluster 43 Cluster 19 Cluster 41

1 of 1

5 / 20



GSMNP LiDAR-derived canopy structure classification

Figure: Map (above) showing the 30 most-different
classes of vegetation canopy structure, as identified by
k-means clustering (right) for the Great Smoky
Mountains National Park.

6 / 20



Scalable k-means Clustering with pKluster

I When pKluster was initially written, on-node parallelism was virtually nonexistent on commodity
PCs; the focus was purely on distributed-memory parallelism.

I Because of extreme heterogeneity of the cluster, a master-slave parallel programming paradigm
was used (provides dynamic load-balancing).
I On modern, a fully-distributed, masterless approach may be more efficient.
I We work with the master-slave version here, because some techniques used here introduce load

imbalance even on homogeneous machines.

Features:

I Runs on any machine (or cluster) with C89 (or higher) C compiler and an MPI implementation.

I Option to improve cluster quality by moving or “warping” clusters that become empty to locations
in data space where points that are farthest from their current cluster centroids reside.

I Support for clustering observation vectors with many zero entries (e.g., species occurrence data).
I Fast! Suitable for clustering multi-terabyte data sets.

I Implements “accelerated” k-means algorithm.
I Optimizations for manycore CPU and GPGPU systems.

7 / 20



Manycore Computing Architectures

I In recent years, the number of compute cores and hardware threads has been dramatically
increasing.

I Seen in GPGPUS, “manycore” processors such as the Intel Xeon Phi, and even on standard server
processors (e.g., Intel Xeon Skylake).

I There is also increasing reliance on data parallelism/fine-grained parallelism.
I Current Intel Xeon processors have 256-bit vector registers and support AVX2 instructions.
I Second-generation Intel Xeon Phi processors and Intel Skylake Server processors have 512-bit

vectors/AVX512 instructions.

At left, “Knights Landing” (KNL) Xeon Phi processor:
I Up to 36 tiles interconnected via 2D mesh

I Tile: 2 cores + 2 VPU/core + 1 MB L2 cache

I Core: Silvermont-based, 4 threads per core, out-of-order execution

I Dual issue; can saturate both VPUs from a single thread

I 512 bit (16 floats wide) SIMD lanes, AVX512 vector instructions

I High bandwidth memory (MCDRAM) on package: 490+ GB/s

bandwidth on STREAM triad2

8 / 20



Benchmarking Platforms and Problem

Benchmark problem: GSMNP LiDAR clustering

I 1.5 million observations

I 74 coordinates

I k = 2000 clusters

9 / 20



Parallel k-means clustering algorithm

I Centralized master-worker paradigm

I Start from some initial centroids (chosen offline)
I Master:

I Broadcasts centroids and aliquot assignment to
workers

I Collects new cluster assignments from workers
I Recomputes centroids

I Workers, for an assigned aliquot:
I Compute observation-to-centroid distances
I Assign each observation to closest centroid

Figure: Illustration of k-means iteration for
k = 3. https://commons.wikimedia.org/
wiki/File:K-means_convergence.gif

10 / 20

https://commons.wikimedia.org/wiki/File:K-means_convergence.gif
https://commons.wikimedia.org/wiki/File:K-means_convergence.gif


Accelerated k-means clustering

I Classical k-means actually performs more distance calculations than required!

I Use the triangle inequality to eliminate unnecessary point-to-centroid distance computations based
on the previous cluster assignments and the new inter-centroid distances.

I Reduce evaluation overhead by sorting inter-centroid distances so that new candidate centroids cj
are evaluated in order of their distance from the former centroid ci . Once the critical distance
2d(p, ci ) is surpassed, no additional evaluations are needed, as the nearest centroid is known from
a previous evaluation.

d(i , j) ≤ d(p, i) + d(p, j)
d(i , j)− d(p, i) ≤ d(p, j)
if d(i , j) ≥ 2d(p, i) :

d(p, j) ≥ d(p, i)
without calculating the distance d(p, j)

11 / 20



Baseline Performance

I 1.3X speedup on SKX vs.
BDW

I Significant slowdown
(2.2X) on KNL

12 / 20



Effective Use of Hyperthreads

I Using a pure MPI approach (one MPI rank per core), performance of the accelerated k-means
clustering approach is surprisingly poor on the “Knights Landing” (KNL) processor.

I Using two MPI ranks per core slightly decreases time in the actual clustering calculation, but
slightly increases total time due to greater overhead in master-worker coordination.

I This suggests that using more available hardware threads can improve performance on KNL, if we
can avoid increasing master-worker overhead.

13 / 20



Performance Optimizations: OpenMP Parallelism on KNL

I Hybrid MPI-OpenMP
version of distance
calculation function
effectively utilizes FMA
units and reduces the
bottleneck on rank 0.

I Use dynamic loop
scheduling to smooth
load imbalance due to
triangle inequality (many
observations in an aliquot
might skip
point-to-centroid distance
calculation).

I Pin each MPI to a KNL
“tile” and spawn 8
threads (4 threads per
core).

I 2.8X improvement.

14 / 20



Performance Optimizations: OpenMP Parallelism on BDW and SKX

15 / 20



Improving computational intensity

I Can achieve greater computational intensity of the observation–centroid distance calculations by
expressing the calculation in matrix form:
I For observation vector xi and centroid vector zj , the squared distance between them is

Dij =
∥∥xi − zj

∥∥2
.

I Via binomial expansion, Dij = ‖xi‖2 +
∥∥zj∥∥2 − 2xi · zj

I The matrix of squared distances can thus be expressed as D = x1ᵀ + 1zᵀ − 2XᵀZ , where X and Z
are matrices of observations and centroids, respectively, stored in columns, x and z are vectors of the
sum of squares of the columns of X and Z , and 1 is a vector of all 1s.

I Above expression can be calculated in terms of a level-3 BLAS operation (xGEMM), followed by
two rank-one updates (xGER, a level-2 operation).

I We use highly optimized BLAS implementations from Intel’s MKL and NVIDIA cuBLAS to speed
up distance calculations on Xeon Phi and GPGPUs, respectively.

I Distance calculations using above formulation can be dramatically faster than the straightforward
loop over vector distance calculations when many distance comparisons must be made.

I Using the matrix formulation for distance comparisons in early k-means iterations is
straightforward; a more complicated approach we hope to explore is using the matrix formulation
in combination with the acceleration techniques described above, in which only a subset of
observation–centroid distances are calculated.

16 / 20



Performance Summary

I BLAS formulation
provides the best
performance on KNL,
slightly slower then P2P
distance calculation SKX.

I Overall performance
improvements:
I KNL: 3.5X
I BDW: 1.3X
I SKX: 1.4X

17 / 20



Future Directions: Software Development

I Investigate hybrid approach combining accelerated k-means method and matrix formulation within
the same iteration.

I Re-implement a fully distributed, masterless approach in the current version of the code to handle
cases in which master-slave overhead is high (e.g., many cases on KNL).

I Add support for emerging high-capacity, non-volatile memory technologies.

I Supported open-source release under Apache License 2.0.

18 / 20



Future Directions: Possible Science Goals

I Potential questions of interest:
I How are global plant distributions affect by climate change?
I What are the implications for global carbon budgets and feedbacks to climate?
I What changes do we expect to key events like onset of growing season?
I What changes do we expect to suitable growing ranges for crops?
I Are there policy implications for agriculture and ensuring the food supply?

I Could combine analysis to all of the MODIS vegetative phenology record with global fine-scale
meteorological reanalysis and possibly other ancillary data layers.
I Enables attribution of vegetation changes to climate or other events.
I Study directly observed vegetation responses to extreme events.

I Could analyze high-resolution and/or multi-model ensemble Earth system model simulations:
I Project changes to distribution of eco-phenoregions (identified by the historical analysis) for different

climate change scenarios.
I Combine with crop physiology models to project changes in yields.
I Combine with urban growth models or population models to assess resource planning, policy

scenarios, and crop futures.

I Potential collaborators: Beta users of pKluster are welcome! What is your scientific question?

19 / 20


