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Optimization notice

Optimization Notice
Intel’s compilers may or may not optimize to the same degree for
non-Intel microprocessors for optimizations that are not unique to
Intel microprocessors. These optimizations include SSE2, SSE3, and
SSSE3 instruction sets and other optimizations. Intel does not
guarantee the availability, functionality, or effectiveness of any
optimization on microprocessors not manufactured by Intel.
Microprocessor-dependent optimizations in this product are intended
for use with Intel microprocessors. Certain optimizations not specific
to Intel microarchitecture are reserved for Intel microprocessors.
Please refer to the applicable product User and Reference Guides for
more information regarding the specific instruction sets covered by
this notice.
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Introduction/Outline

• Scalable approaches to two kinds of unsupervised machine
learning:

Clustering: Accelerated k-means
Matrix decomposition: SVD/PCA

• These techniques have found extensive application in analysis of
MODIS NDVI-based vegetation phenology products of the
ForWarn project (http://forwarn.forestthreats.org/).

• Other talks in this session will demonstrate application of
k-means to vegetation phenology.

• We’ll look at using PCA to visualize trends and detect anomalies
in vegetation phenology from satellite NDVI data.
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Data-mining with ForWarn NDVI phenology products

• For each year and each grid cell in the CONUS, construct an
observation vector of 46 NDVI values representing the seasonal
NDVI trace for that year/location.
• All observation vectors are combined into a data matrix with 46

columns and hundreds of millions of rows (each year corresponds
to 146.4 million rows).
• Data are standardized and then clustered via k-means.
• Cluster assignments are mapped back to each map cell and year

from which each observation came, yielding one map per year in
which each cell is classified into one of k clusters or
“phenoclasses”.
• These can be viewed as forming a dictionary of prototypical

annual NDVI traces.
• Later in the talk, we explore how PCA/SVD approaches can be

used to look for trends and anomalies.
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Cluster centroids/annual NDVI curve “prototypes”
Phenology Centroid Prototypes (phendump.2000-2012, k = 50)

Cluster 11 Cluster 49 Cluster 15 Cluster 48 Cluster 31 Cluster 16 Cluster 47 Cluster 20 Cluster 35 Cluster 33

Cluster 22 Cluster 24 Cluster 27 Cluster 4 Cluster 42 Cluster 29 Cluster 3 Cluster 38 Cluster 7 Cluster 30

Cluster 1 Cluster 50 Cluster 46 Cluster 9 Cluster 26 Cluster 39 Cluster 14 Cluster 12 Cluster 25 Cluster 8

Cluster 45 Cluster 6 Cluster 18 Cluster 36 Cluster 28 Cluster 37 Cluster 32 Cluster 44 Cluster 34 Cluster 17

Cluster 21 Cluster 2 Cluster 10 Cluster 40 Cluster 5 Cluster 23 Cluster 13 Cluster 43 Cluster 19 Cluster 41

1 of 1

Figure: Fifty centroids (corresponding to “phenoregion” prototypes) from a
k = 50 clustering. The colors of the centroid plot correspond to the map
colors on the next slide.
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Phenoregions map, k = 50
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Parallel k-means clustering

• We have two implementations of accelerated k-means clustering,
following two parallel programming models

A master-worker (MW) model: Central master assigns “aliquots”
of work to workers. Facilitates dynamic load balancing but has
memory and performance scalability limits due to single, central
process.
Fully distributed (FD): All processes use static distribution of
work. Very scalable, but no dynamic load balancing.

• We improve cluster quality by moving or “warping” clusters that
become empty to locations in data space where points that are
farthest from their current cluster centroids reside.

• We “accelerate” the k-means process using two techniques
described by Phillips (doi:10.1109/IGARSS.2002.1026202):
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Accelerated k-means clustering

• Use the triangle inequality to eliminate unnecessary
point-to-centroid distance computations based on the previous
cluster assignments and the new inter-centroid distances.

• Reduce evaluation overhead by sorting inter-centroid distances so
that new candidate centroids cj are evaluated in order of their
distance from the former centroid ci. Once the critical distance
2d(p, ci) is surpassed, no additional evaluations are needed, as
the nearest centroid is known from a previous evaluation.

d(i, j) ≤ d(p, i) + d(p, j)
d(i, j)− d(p, i) ≤ d(p, j)
if d(i, j) ≥ 2d(p, i) :

d(p, j) ≥ d(p, i)
without calculating the distance

d(p, j)
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Parallel Performance with Accelerated k-means

• In 2011, we would use ∼1024 AMD Opteron cores on a machine
like Jaguar, the Cray XT5 at ORNL, for our analyses.
• In 2016, we can do larger analyses on a single compute node of

Intel’s Endeavor cluster with Intel® Xeon® E7-8890 v3
(“Haswell-EX”) processors.

AVX2 instruction set: 256-bit (8 single precision floats) vector
registers with dual-issue fused multiply-add
Four 18 core (36 thread) CPUs; over 500 GB DRAM
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Parallel Performance with Accelerated k-means
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Figure: Times to cluster different versions of the 2000–2009 ForWarn phenology
data set on (a) 1024 cores of the Jaguar Cray XT5, ca. 2011 at ORNL and (b) a
single 72-core “Haswell-EX” node on Intel’s Endeavor cluster. The data set used
on Jaguar is the 16 day product, while the one on Endeavor is the 8 day product
and is therefore twice as large (251 GB in single precision). Figure (b) illustrates
the benefit of using smaller aliquots to enable dynamic load balancing in the
master-worker clustering code.
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Improving computational intensity

• It is possible to achieve greater computational intensity of the
observation–centroid distance calculations by expressing the
calculation in matrix form:

For observation vector xi and centroid vector zj , the squared

distance between them is Dij = ‖xi − zj‖2.

Via binomial expansion, Dij = ‖xi‖2 + ‖zj‖2 − 2xi · zj
The matrix of squared distances can thus be expressed as
D = x1ᵀ + 1zᵀ − 2XᵀZ, where X and Z are matrices of
observations and centroids, respectively, stored in columns, x and
z are vectors of the sum of squares of the columns of X and Z,
and 1 is a vector of all 1s.

• The above expression for D can be calculated in terms of a
level-3 BLAS operation (xGEMM), followed by two rank-one
updates (xGER, a level-2 operation).
• Level 2 and 3 BLAS operations admit very computationally

efficient implementations, and libraries such as Intel® MKL
provide highly optimized versions.
• We have experimented with using the above, matrix formulation

for the distance calculations and have found that it is
dramatically faster than the straightforward loop over vector
distance calculations when many distance comparisons must be
made.
• Using the matrix formulation for distance comparisons in early

k-means iterations is straightforward; a more complicated
approach we will explore is using the matrix formulation in
combination with the acceleration techniques described above, in
which only a subset of observation–centroid distances are
calculated.
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Performance with matrix-form distance calculation
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(b)

Figure: Timings for clustering as GSMNP LiDAR dataset using a single worker
process on an Intel® Core™ i7-5650U CPU operating at 2.20GHz. (a) Total
timings for k-means clustering using the acceleration techniques; doing all distance
comparisons but forming the distance matrix using BLAS operations provided by
Intel® MKL; and doing all distance comparisons without the benefit of the matrix
formulation and BLAS. (b) Timings per iteration for k=100 when using the
acceleration technique compared to the matrix formulation for the distance
calculations. In early iterations, where many distance comparisons are required, the
matrix formulation offers better performance.
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Combining the best of both methods

• Using the matrix formulation for the distance calculations is
dramatically faster than the straightforward loop over vector
distance calculations when many distance comparisons must be
made.
• The “acceleration” technique greatly speeds clustering because it

reduces the number of distance comparisons that can be made.
• The best performance should be achieved by combining both

approaches.
• Straightforward: Use the matrix formulation for distance

comparisons in early k-means iterations (when all or most
comparisons are necessary), then switch to the “accelerated”
approach.
• More complicated: Use the matrix formulation for distance

calculations inside accelerated algorithm. Requires online data
rearrangement so that only a subset of observation–centroid
distances are calculated.
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PCA/SVD approaches for forest threat detection

• Our clustering-based approaches can flag a wide range of
disturbances, particularly those involving high mortality events
such as fire, storms, or mountain pine beetle outbreaks.
• Slower-acting agents, such as hemlock woolly adelgid, that cause

a gradual decline in forest health are more difficult.
• Also, the annual phenology of some areas is highly influenced by

interannual climate variability: grasslands, for instance,
experience rapid greenup after precipitation and do not have
smooth annual cycles.
• These areas tend to display a large transition distance from year

to year even when there is essentially no real change in the
vegetation health.
• To remedy these shortcomings, we have been exploring the use

of principal components analysis (PCA) (or the related SVD) as
a complementary approach.
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A complementary approach: Principal component
analysis

Principal Components Analysis (PCA) determines, for a p-dimensional
data set, an orthogonal set of p new axes (linear combinations of the
original p variables) such that the first axis explains the greatest
variance, the second explains the next most variance, and so on.

• Commonly used to determine dominant patterns in data
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Varimax-rotated loadings for top 3 components

Figure: The loadings (coefficients in the linear combination of the 46 original
variables) along the three varimax-rotated principal axes. The x-axis
corresponds to the eight-day NDVI-acquisition windows and loadings are
shown on the y-axis.
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k = 1000 map for year 2000, similarity colored

Figure: Phenoclass assignment map for year 2000 with k = 1000. Similarity
colors are used to indicate cluster membership.
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A complementary approach: Principal component
analysis

Principal Components Analysis (PCA) determines, for a p-dimensional
data set, an orthogonal set of p new axes (linear combinations of the
original p variables) such that the first axis explains the greatest
variance, the second explains the next most variance, and so on.

• Commonly used to determine dominant patterns in data
• But can also be used to determine the anomalous patterns:

Observations that score strongly on low order components do not
follow the correlation structure of the data.
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Parallel Principal Components Analysis Tool

• We have developed a prototype parallel tool to perform PCA.

• Rather than explicitly forming the covariance matrix, computes
thin SVD of the adjusted data matrix.
• Uses the Lawson-Hanson-Chan factorization to exploit the “tall

and skinny” (m >> n) nature of our matrices: (m >> n)

Form reduced factorization A = QR (via parallel PLAPACK
routine)
Gather the matrix R to process 0.
Process 0 calls LAPACK DGESVD to compute the SVD
R = USVT .
Optionally, back transform Q to get Q← QU.
Final SVD is: A = QSVT

• A serial bottleneck exists where the SVD of R is computed, but
this matrix is so small (only 46× 46 for our NDVI data set) that
this serial portion is essentially negligible.
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Detecting anomalous observations with PCA

• Can identify anomalies two complementary ways:

• Look at sum of scores onto r lowest-order components:
p∑

i=p−r+1

y2i
λi

greater than some outlier threshold

• Look at squared prediction error: How well an observation can
be represented in subspace of q highest order components?

Idea: decompose into modeled and residual parts: x = x̂+ x̃
P =

[
v1 v2 . . . vq

]
x̂ = PPTx = Cx and x̃ = (I − PPT )x = C̃x

Abnormal if SPE = ‖x̃‖2 =
∥∥∥C̃x∥∥∥2 exceeds threshold

• Can also do cross-comparison: Construct subspace from one data
set, then see how well observations from another can be
represented in that space.
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Detecting anomalies within single year, single domain

• These approaches will flag any observations that are somehow
“unusual” for the collection of data from which the principal
components have been calculated.

• Some judgement required: choice of NDVI data subset used in
the PCA calculation will affect what constitutes a “normal” or
“abnormal” observation.

• E.g., Extremely low NDVI may appear normal when using PCA
based on national dataset due to presence of areas like the
Mohave; appears anomalous when using PCA based only on
humid Southeast.

• Here we use PCAs computed over single years and within a
spatial domain conforming to the eco-climatic domains
established by the National Ecological Observatory Network.
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NEON Domains
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Detecting anomalies within single year, single domain

• In all examples, PC vectors 10–46 are used as the basis for the
“abnormal” space, which explains 5–10% of the variance.

• In all of examples, certain features that are not disturbances but
possess very anomalous NDVI traces (e.g., bodies of water) show
up very strongly.
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Colorado and Southern Wyoming, 2008

Figure: Portion of the Southern Rockies–Colorado Plateau NEON Domain for year
2008, showing map cells scoring in the 85th percentile. Black polygons show
damaged areas noted in aerial detection surveys; extensive damage due to
mountain pine beetle and sudden aspen decline are evident.

26 US-IALE Annual Meeting, Asheville, NC April 4, 2016 Copyright 2016 Intel Corporation



Vicinity of Louisiana Coast: Hurricane-induced
disturbance

Figure: Portions of the PCA-based anomaly maps (map cells scoring in the 90th
percentile are shown) for the Southeast NEON Domain for years 2004–2009,
showing the area in the vicinity of the Louisiana coast. From left to right, the top
row shows years 2004, 2005, and 2006, respectively, and the bottom row years
2007, 2008, and 2009. The affected regions are circled in the 2005 and 2008
maps. The prominent red features are water bodies.
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Figure: NDVI trajectory as viewed via the Forest Change Assessment Viewer for a
location (close to the center of the circled region in the previous figure) near the
coast in southwestern Louisiana showing apparent hurricane-induced mortality
from events in 2005 and 2008.
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Southern Appalachians: Hemlock decline

Figure: At left, a portion of the PCA-based anomaly map (map cells scoring in the
90th percentile are shown) for the Southern Appalachians/Cumberland Plateau
NEON Domain for year 2010. The arrow indicates a location thought to be
affected by hemlock woolly adelgid, and the corresponding NDVI trajectory is
shown at right.
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Conclusions

• We have developed highly scalable tools for k-means and PCA/SVD of
geospatial data sets.

• Analyses that required O(1000) compute nodes can now be done on a
handful of (or a single) modern compute node.

• Technologies such as NVRAM will soon lead to several-fold increase in
the amount of data that can be processed in memory on a single node.

• Combined with the dramatic increase of parallelism within a node, new
possibilities for analyses fusing several types of observational data sets,
at unprecedented resolutions, will emerge. For example:

Combined analysis of all the MODIS vegetative phenology record with
global fine-scale meteorological reanalysis (and possibly other ancillary
data layers) to enable attribution of vegetation changes to climate or
other events.
Use all archived IPCC simulations to project changes to distribution of
eco-phenoregions (identified by the historical analysis) for different
climate change scenarios.

• My message to the community: Think big!
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