
Parallel k-means Clustering of Geospatiotemporal Data Sets Using Manycore CPU Architectures
Richard Tran Millsα, Vamsi Sripathiγ, Jitendra Kumarβ, Sarat Sreepathiβ, Forrest M. Hoffmanβ, William W. Hargroveδ

αArgonne National Laboratory, βOak Ridge National Laboratory, γIntel Corporation, δUSDA Forest Service Southern Research Station

1. Introduction

• The increasing availability of high-resolution geospatiotemporal data sets from
sources such as observatory networks, remote sensing platforms, and computational
Earth system models has opened new possibilities for knowledge discovery and min-
ing of ecological data sets fused from disparate sources.

• Traditional algorithms and computing platforms are impractical for the analysis and
synthesis of data sets of this size; however, new algorithmic approaches that can
effectively utilize the complex memory hierarchies and the extremely high levels of
available parallelism in state-of-the-art high-performance computing platforms can
enable such analysis.

• We describe pKluster, an open-source tool we have developed for accelerated k-
means clustering of geospatiotemporal data. pKluster supports distributed-memory
parallelism and can effectively utilize state-of-the art multi- and manycore proces-
sors, such as the second-generation Intel Xeon Phi (“Knights Landing”) processor,
as well as GPGPUs.

• We examine some practical applications of pKluster to the climate, remotely-sensed
vegetation phenology, and LiDAR data sets and speculate on some of the other
applications that such scalable analysis methods may enable.

2. Scalable k-means Clustering with pKluster

2.1 The pKluster distributed memory parallel k-means code
• Originally developed in 1996–1997 for use on the Stone Soupercomputer, a very

early Beowulf-style cluster constructed entirely out of surplus parts (see “The Do-
It-Yourself Supercomputer”, Scientific American, 265 (2), pp. 72-79, 2001.)

• Because of extreme heterogeneity of the cluster, a master-slave parallel programming
paradigm was used, as this provided excellent dynamic load-balancing.

• On modern, homogeneous machines, the master-slave paradigm may be less efficient
than a fully-distributed, masterless approach.
– We have explored the masterless approach in a prototype rewrite of the code.
– We work with the master-slave version here, because some techniques described

below introduce load imbalance even on homogeneous machines.
• When pKluster was initially written, on-node parallelism was virtually nonexistent

on commodity PCs; the focus was purely on distributed-memory parallelism.
• Features:

– Planned open-source release under the Apache License 2.0.
– Runs on any machine (or cluster) with C89 (or higher) C compiler and an MPI

implementation.
– Option to improve cluster quality by moving or “warping” clusters that become

empty to locations in data space where points that are farthest from their current
cluster centroids reside.

– Implements “accelerated” k-means algorithm.
– Optimizations for manycore CPU and GPGPU systems.
– Coming soon: Support for clustering observation vectors with many zero entries

(e.g., species occurrence data).

2.2 “Accelerated” k-means Algorithm
• For very large datasets and/or cases when the number of clusters k is large, straight-

forward implementation of k-means proves too expensive, even when using many
compute nodes.

• We “accelerate” the k-means process using two techniques described by Phillips
(doi:10.1109/IGARSS.2002.1026202):
– Use the triangle inequality to eliminate unnecessary point-to-centroid distance

computations based on the previous cluster assignments and the new inter-centroid
distances.

– Reduce evaluation overhead by sorting inter-centroid distances so that new can-
didate centroids cj are evaluated in order of their distance from the former centroid
ci. Once the critical distance 2d(p, ci) is surpassed, no additional evaluations are
needed, as the nearest centroid is known from a previous evaluation.

d(i, j) ≤ d(p, i) + d(p, j)
d(i, j) − d(p, i) ≤ d(p, j)
if d(i, j) ≥ 2d(p, i) :

d(p, j) ≥ d(p, i)
without calculating the distance d(p, j)

Figure 2: The triangle inequality is used to eliminate unnecessary distance calculations.

����

����

����

��

����

����

����

�� ��� ��� ��� ��� ���� ����

�
�
�
�
�
�
�
�
�
��
�
�
��
�
�

����������������

���

Figure 3: Clustering the GSMNP LiDAR dataset from section 4 for k = 2000 with the accelerated
k-means algorithm on the BDW system. Time for each iteration decreases as the accelerated algorithm
is able to avoid many distance comparisons.

• We also improve cluster quality by moving or “warping” clusters that become empty
to locations in data space where points that are farthest from their current cluster
centroids reside.

3. Manycore Computing Architectures

• In recent years, the number of CPU cores and hardware threads has been dramati-
cally increasing.

• This is true on both standard server processors, as well as “manycore” processors
such as the Intel Xeon Phi.

• There is also increasing reliance on data parallelism/fine-grained parallelism.
– Second-generation Intel Xeon Phi processors have 512-bit vectors/AVX512 in-

structions; Skylake and Kaby-Lake Intel Xeon processors also support AVX512.
– Slightly older Intel Xeon processors (Haswell and Broadwell generations) have

256-bit vector registers and support AVX2 instructions.
• Here, we adapt pKluster to Intel Xeon processors from recent generations and the

Many Integrated Core (MIC) architecture of the second-generation “Knights Landing”
(KNL) Intel Xeon Phi.

Second generation “Knights Landing” Intel Xeon Phi processors
• Available as standalone, self-boot CPU—no offload bottle-

neck; binary compatible with Intel Xeon Processors

• Up to 36 tiles interconnected via 2D mesh

• Tile: 2 cores + 2 VPU/core + 1 MB L2 cache

• Core: Silvermont-based, 4 threads per core, out-of-order
execution

• Dual issue; can saturate both VPUs from a single thread

• 512 bit SIMD lanes, AVX512 vector instructions

• High bandwidth memory (MCDRAM) on package: 490+
GB/s bandwidth on STREAM triad

4. Benchmarking Setup and Baseline Performance

4.1 Benchmarking Platforms
• We use three hardware platforms: A 68-core KNL node, and dual-socket systems

with “EP” versions of the current (Skylake, SKX) and previous (Broadwell, BDW)
generation Intel Xeon server processors.

• All have similar power envelopes, so, from a power efficiency standpoint, a comparison
of their performance is appropriate.

• SKX has some features similar to KNL that are new to the Xeon line: it has 512-
bit vector registers and uses a variant of the AVX-512 instruction set, and it uses
a mesh-on-die interconnect instead of the ring architecture used in previous Xeon
generations.

• Both Xeon platforms deliver much higher per-thread performance than does KNL.
Therefore, in general it is critically important for applications to possess sufficient
parallel scalability to use most or all of the available cores or hardware threads in
order to deliver competitive performance on KNL.

Table 1: Characteristics of the computing platforms used for performance benchmarking
in this study.

Intel Xeon E5-2697 v4 Intel Xeon Gold 6148 Intel Xeon Phi 7250
Code Name Broadwell (BDW) Skylake (SKX) Knights Landing (KNL)
Sockets 2 2 1
Cores 36 40 68
Threads 72 80 272
CPU clock 2.3 GHz 2.4 GHz 1.4 GHz
High-bandwidth memory - - 16 GB
DRAM 128 GB @ 2400 MHz 192 GB @ 2666 MHz 98 GB @ 2400 MHz
Instruction set architecture AVX2 AVX-512F,DQ,CD,BW,VL AVX-512F,PF,ER,CD
Theoretical peak flops (FP32 / FP64) 2649 / 1324 6144 / 3072 6092 / 3046

4.2 GSMNP LiDAR Benchmark Problem
• For a benchmark problem, we cluster a data set from Kumar et al. 2015 (https:
//doi.org/10.3334/ORNLDAAC/1286): airborne multiple return Light Detec-
tion and Ranging (LiDAR) surveys of the Great Smoky Mountains National Park
(GSMNP).

• LiDAR enables large scale remote sensing of topography, built infrastructure, and
vegetation structure.

• k-means clustering of LiDAR point cloud data was used to construct vertical density
profiles to characterize vertical vegetation structure.

• 30 m × 30 m horizontal and 1 m vertical (extending to a height of 75 m) spatial
resolution was used, with the input data set consisting of 3,186,679 observations,
each of 74 variables, requiring 900 MB of storage in single precision.

Figure 4: Vegetation structure classes and their distribution in the Great Smoky Moun-
tains National Park (GSMNP) derived from k-means clustering (k = 30) of the GSMNP
LiDAR data set. The spatial distribution is shown at the left, and the prototype canopy
structures (cluster centroids) are shown at the right. The color scheme on the map
correspond to the colors of the prototypes.

 40

 60

 80

 100

 120

 140

 160

 180

 200

 220

BDW(MPI=36) SKX(MPI=40) KNL(MPI=68)

W
a
ll

C
lo

c
k
 T

im
e
 (

s
e
c
)

Performance of k-means with k=2000

Total Time
Compute Time

Figure 5: Baseline performance (employing a version of pKluster that incorporates the
triangle inequality-based “acceleration” algorithm but no further code improvements)
of the three benchmarking platforms for computing k = 2000 clusters for the GSMNP
LiDAR data set using the accelerated k-means algorithm.

4.3 Effective Use of Hyperthreads
• Using a pure MPI approach (one MPI rank per core), performance of the accelerated
k-means clustering approach is surprisingly poor on the “Knights Landing” (KNL)
processor.

• Using two MPI ranks per core slightly decreases time in the actual clustering cal-
culation, but slightly increases total time due to greater overhead in master-worker
coordination.

• This suggests that using more available hardware threads can improve performance
on KNL, if we can avoid increasing master-worker overhead.

• We introduced OpenMP threading in the most time-intensive routine,
cluster_aliquot(), using dynamic scheduling to deal with inherent load im-
balance in the accelerated approach. This provides the most benefit on KNL, but
BDW and SKX also see a performance boost.

 0

 20

 40

 60

 80

 100

 120

Static Dynamic Guided Auto

W
a
ll

C
lo

c
k
 T

im
e
 (

s
e
c
)

Impact of OMP Loop Scheduling

 0

 50

 100

 150

 200

 250

 300

 350

68 MPI (Baseline)272 MPI (Baseline) 34 MPI + 8 OMP

W
a
ll

C
lo

c
k
 T

im
e
 (

s
e
c
)

KNL(68C/272T): MPI Vs MPI+OpenMP

Total Time
Compute Time

Figure 6: Impact of incorporating OpenMP threading into pKluster on the KNL plat-
form. At left: The effects of different kinds of OpenMP loop scheduling when finding
k = 2000 clusters of the GSMNP data set. Setting schedule to dynamic, guided,
or auto provides significant speedup over the static default. At right: Performance
for various MPI rank and OpenMP thread configurations. CLUSTER_TIMER denotes
the time spent inside the actual k-means calculation (no communication or I/O), and
TOTAL_TIMER denotes the entire wall-clock time for completing the pKluster execu-
tion. Using all 272 hyperthreads significantly benefits performance when using the
combination of 34 MPI ranks and 8 OpenMP threads per rank.

 50

 55

 60

 65

 70

 75

 80

 85

 90

 95

 100

36 MPI
(Baseline)

72 MPI
(Baseline)

9 MPI +
8 OMP

18 MPI +
4 OMP

36 MPI +
2 OMP

W
a
ll

C
lo

c
k
 T

im
e
 (

s
e
c
)

BDW (36C/72T): Impact of HyperThreading

Total Time
Compute Time

 35

 40

 45

 50

 55

 60

 65

 70

 75

 80

40 MPI
(Baseline)

80 MPI
(Baseline)

10 MPI +
8 OMP

20 MPI +
4 OMP

40 MPI +
2 OMP

W
a
ll

C
lo

c
k
 T

im
e
 (

s
e
c
)

SKX (40C/80T): Impact of HyperThreading

Total Time
Compute Time

Figure 7: Comparison of times to cluster the GSMNP LiDAR data set with k = 2000
on the Broadwell (BDW, left) and Skylake (SKX, right) Xeon processors for different
numbers of MPI ranks and OpenMP threads.

4.4 Improving Computational Intensity Using Level-2/3 BLAS
• We recently realized that it is possible to achieve greater computational intensity

of the observation–centroid distance calculations by expressing the calculation in
matrix form:

– For observation vector xi and centroid vector zj , the squared distance between
them is Dij = ∥∥xi − zj

∥∥2.
– Via binomial expansion, Dij = ∥∥xi∥∥2 + ∥∥zj∥∥2 − 2xi · zj
– The matrix of squared distances can thus be expressed as D = x1ᵀ + 1zᵀ − 2X ᵀZ ,

where X and Z are matrices of observations and centroids, respectively, stored in
columns, x and z are vectors of the sum of squares of the columns of X and Z , and
1 is a vector of all 1s.

• The above expression for D can be calculated in terms of a level-3 BLAS operation
(xGEMM), followed by two rank-one updates (xGER, a level-2 operation).

• Level 2 and 3 BLAS operations admit very computationally efficient implementations;
we use the highly optimized BLAS implementations from Intel’s MKL and NVIDIA
cuBLAS Xeon Phi and GPGPUs, respectively.

• We have found that the above, matrix formulation for the distance calculations is
dramatically faster than the straightforward loop over vector distance calculations
when many distance comparisons must be made.

• Using the matrix formulation for distance comparisons in early k-means iterations is
straightforward; a more complicated approach we will explore is using the matrix for-
mulation in combination with the acceleration techniques described above, in which
only a subset of observation–centroid distances are calculated.

��

���

���

���

���

����

����

�� ���� ���� ���� ���� ����� ����� ����� ����� ����� �����

�
�
�
�
�
�
�
�
�
��
�
�
��
�
�

��������������������

��

���������������
����������������������

���������������
����������������������

Figure 8: Comparison of timings for clustering the GSMNP LiDAR dataset for different
values of k on the KNL and BDW platforms using the accelerated k-means algorithm
and the matrix formulation that uses level-2 and level-3 (xGEMM) BLAS calls.

 40

 60

 80

 100

 120

 140

 160

 180

 200

 220

BDW SKX KNL

T
o
ta

l
W

a
ll

C
lo

c
k
 T

im
e
 (

s
e
c
)

Comparison of k-means Implementations

BLAS
P2P-Baseline (MPI)

P2P-Optimized (MPI+OMP)

Figure 9: Performance comparison of k-means implementations for the GSMNP LiDAR
dataset with k = 2000. Here P2P refers to the pKluster implementation using triangle
inequality-based acceleration, and BLAS refers to the matrix formulation of distance
computations.

5. Additional Geospatio(temporal) Applications

5.1 MODIS-based Phenoregionalization and Change Detection

Phenology Centroid Prototypes (phendump.2000-2012, k = 50)

Cluster 11 Cluster 49 Cluster 15 Cluster 48 Cluster 31 Cluster 16 Cluster 47 Cluster 20 Cluster 35 Cluster 33

Cluster 22 Cluster 24 Cluster 27 Cluster 4 Cluster 42 Cluster 29 Cluster 3 Cluster 38 Cluster 7 Cluster 30

Cluster 1 Cluster 50 Cluster 46 Cluster 9 Cluster 26 Cluster 39 Cluster 14 Cluster 12 Cluster 25 Cluster 8

Cluster 45 Cluster 6 Cluster 18 Cluster 36 Cluster 28 Cluster 37 Cluster 32 Cluster 44 Cluster 34 Cluster 17

Cluster 21 Cluster 2 Cluster 10 Cluster 40 Cluster 5 Cluster 23 Cluster 13 Cluster 43 Cluster 19 Cluster 41

1 of 1

Figure 10: At left: a map of “phenoregion” assignments for the year 2012, based on k-means analysis
with k = 50 of the entire MODIS-derived ForWarn NDVI product for years 2000–2012. The body of
observation vectors being clustered consists of the year-long MODIS NDVI time series for every map
pixel, for each year. The map indicates cluster membership (in random colors) for the phenology observed
in 2012 at each map pixel. At right: The fifty centroids (corresponding to “phenoregion” prototypes) used
for the membership assignments in the map.

(a) 2004 − 2003 (b) 2005 − 2003 (c) 2006 − 2003

(d) 2007 − 2003 (e) 2008 − 2003
Figure 11: Maps showing the relative state space transition distances (how different phenoregion
assignments are for given years) between years in Colorado and southern Wyoming. Pine beetle mor-
tality correlates strongly with high transition distances. Black-outlined polygons are disturbed areas
indicated on aerial sketch maps.

5.2 Analysis of Global Climate Regimes

• We can compute climate-based “ecoregions” using k-means analysis of bioclimatic
plus ancillary variables.

• Comparing the maps produced for present day and for simulated future conditions
facilitates quantitative study of the effects of projected climate change on ecoregion
distribution.

Table 2: Variables used for delineation of global climate regimes. Data drawn from
Hijmans et al. 2005 [doi:10.1002/joc.1276], Saxon et al. 2005 [doi:10.1111/j.1461-
0248.2004.00694.x], Baker et al. 2010 [10.1007/s10584-009-9622-2]

Variable Description Units
Bioclimatic Variables
Precipitation during the hottest quarter mm
Precipitation during the coldest quarter mm
Precipitation during the driest quarter mm
Precipitation during the wettest quarter mm
Ratio of precipitation to potential evapotranspiration –
Temperature during the coldest quarter ◦C
Temperature during the hottest quarter ◦C
Day/night diurnal temperature difference ◦C
Sum of monthly Tavg where Tavg ≥ 5◦C ◦C
Integer number of consecutive months where Tavg ≥ 5◦C –

Variable Description Units
Edaphic Variables
Available water holding capacity of soil mm
Bulk density of soil g/cm3

Carbon content of soil g/cm2

Nitrogen content of soil g/cm2

Topographic Variables
Compound topographic index (relative wetness) –
Solar interception (kW/m2)
Elevation m

Evapotranspiration

 Precipitation,

Temperature & Growing

 Season Length

and Soil nutrients

Elevation, radiation
Evapotranspiration

 Precipitation,

Temperature & Growing

 Season Length

and Soil nutrients

Elevation, radiation

Figure 12: 1000 Global climate regimes generated by the k-means clustering algorithm for contem-
porary time period (left) and predicted future 2100 by HadCM3 climate model under A1FI emissions
scenario (right). Clusters are colored according to a similarity color scheme using the top three com-
ponents from principal components analysis. The red color channel largely reflects topography and
soil properties; the green channel, precipitation variables and evapotranspiration; and the blue channel,
temperature variables and growing season length.

6. Future Directions

6.1 pKluster Software Development

• Investigate hybrid approach combining accelerated k-means method and matrix for-
mulation within the same iteration.

• Re-implement a fully distributed, masterless approach in the current version of the
code to handle cases in which master-slave overhead is high (e.g., many cases on
KNL).

• Add support for emerging high-capacity, non-volatile memory technologies.
• Supported open-source release under Apache License 2.0.
• Also considering a new implementation using PETSc, the Portable, Extensible Toolkit

for Scientific Computation (https://www.mcs.anl.gov/petsc/).

6.2 Future Science Goals

• Increasingly powerful CPUs, combined with large byte-addressable memories
promised by emerging nonvolatile random access memories (NVRAM) technologies,
will allow more ambitious analysis of large geospatiotemporal data sets from both
models and empirical observations.

• Potential questions of interest:
– How is climate change affecting global plant distributions?
– What are the implications for global carbon budgets?
– What changes do we expect to key events like onset of growing season?
– What changes do we expect to suitable growing ranges for crops?
– Are there policy implications for agriculture and ensuring the food supply?

• Could combine analysis all of the MODIS vegetative phenology record with global
fine-scale meteorological reanalysis (gridded reconstruction of meteorological his-
tory) and possibly other ancillary data layers.
– Enables attribution of vegetation changes to climate or other events.
– Study directly observed vegetation responses to meteorology.

• Could analyze high-resolution and/or multi-model ensemble Earth system model
simulations:
– Project changes to distribution of eco-phenoregions (identified by the historical

analysis) for different climate change scenarios.
– Combine with crop physiology models to project changes in yields.
– Combine with urban growth models, population models to assess resource plan-

ning, policy scenarios, crop futures.

7. Acknowledgments

R. T. Mills was supported by the Exascale Computing Project (17-SC-20-SC), a collaborative effort of the U.S. Department
of Energy Office of Science and the National Nuclear Security Administration. JK and FMH were partially supported by
the Next Generation Ecosystem Experiments - Arctic (NGEE Arctic) project, which is sponsored by the Terrestrial Ecosystem
Sciences (TES) Program, and the Reducing Uncertainties in Biogeochemical Interactions through Synthesis and Computation
Scientific Focus Area (RUBISCO SFA), which is sponsored by the Regional and Global Model Analysis (RGMA) Program.
The TES and RGMA Programs are activities of the Climate and Environmental Sciences Division (CESD) of the Office of
Biological and Environmental Research (BER) in the U.S. Department of Energy Office of Science. WWH, JK, and FMH
claim additional support from the Eastern Forest Environmental Threat Assessment Center (EFETAC) in the U.S. Department
of Agriculture Forest Service. This presentation has been coauthored by UChicago Argonne, LLC and UT-Battelle, LLC under
Contract numbers DE-AC02-06CH11357 and DE-AC05-00OR22725, respectively, with the U.S. Department of Energy.

