A comparison of landscape impacts from Great Smoky's May 2017 windstorm and Nov. 2016 wildfire caused by recurrent mountain waves

Steve Norman * William Christie * William Hargrove US Forest Service Southern Research Station Asheville, NC

Great Smoky Mountains National Park Science Colloquium Park Vista Hotel, Gatlinburg, TN

March 22, 2018

Objectives

To better understand this recurring Mountain Wave weather hazard in and near the Park,

By employing new remote sensing <u>technologies</u> that can show disturbance <u>behavior</u> and <u>impacts</u> in new light,

And distinguish <u>ephemeral</u> from <u>impactful</u> change at 10m resolution.

Great Smoky's peculiar hazard from Mountain Waves

Generalized Mountain Wave winds north of Gatlinburg

The Mountain Wave wildfire

<u>Date</u>: Nov. 28, 2016

<u>Methodology</u>: Comparison of growing season max-value composites for summer 2016 and 2017.

Year 2

Year 1

Sentinel 2 10m

The Mountain Wave windstorm

Date: May 4, 2017

<u>Methodology</u>: Quantify the strength of the reversal of spring greenup before and after the wind event.

Sentinel 2 true color May 2, 2017

Gatlinburg

Mt. LeConte

TN

NC

Sentinel 2 true color May 15, 2017

Gatlinburg

1 4 A A

Decline

Greening

TN

Mt. LeConte

NC

Greenup reversal May 2 vs. May 15, 2017

SS

Strength of the early May 2017 phenological reversal for the Great Smoky Mountains National Park region

Growing season impacts of the

fire and windstorm

2016 vs. 2017 from Sentinel 2 composites

Seasonally-persistent windstorm damage

Gatinoline

Great Smoky Mountains National Park

Average growing season vegetation (rdNDVI) change from a fire and windstorm by elevation

Average growing season vegetation (rdNDVI) change from a fire and windstorm by aspect (1,300-2,800 ft.) N=9,078 random Sentinel 2

Average growing season vegetation (rdNDVI) change from a fire and windstorm by topographic position (1,300-2,800 ft.) N=9,078 random Sentinel 2

Conclusions

- This research has quantified vegetation impacts in the Park using a uniform NDVI measure at 10m resolution following the *Chimney Tops 2 Fire* and subsequent *May 4, 2017 windstorm*—two landscape disturbances caused by similar *Mountain Waves*.
- Topographic analysis reveals similarities and differences, with fire's response strongly linked to slope-associated fuels and windstorm effects suggesting slope exposure, valley channelization and sensitivity to the magnitude of the prior (fire) disturbance.
- As much as vegetation dynamics here depends on these extreme events, the mechanisms of disturbance and succession are spatially variable and mappable, *thus, are hazards and risks*.

