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Abstract

Timely and accurate knowledge about the geospatial distribution of crops at regional to continental scales

is crucial for forecasting crop production and estimating crop water use. The United States (US) is one of

the leading food-producing countries, but lacks a nationwide high resolution crop-specific land cover map

available publicly during the current growing season. The goal of this study was to map crops across the

Continental US (CONUS) before the harvest, and to estimate the earliest date of classification by which

crops can be mapped with sufficient accuracy (90% of full-season accuracy). The study employed a scalable

cluster-then-label model that was trained on multiple years of MODIS NDVI using ground truth data in the

form of US Department of Agriculture (USDA) Cropland Data Layer (CDL) products. The first step in

the crop classification was to perform Multivariate Spatio-Temporal Clustering (MSTC) of annual MODIS-

derived NDVI trajectories to create phenologically similar regions, or phenoregions. The second step was

to assign crop labels to phenoregions based on spatial concordance between phenoregions and crop classes

from CDL using Mapcurves. Assigning crop labels to phenoregions was performed within ecoregions to

reduce classification errors due to spatial variability in phenology caused by variations in climate, agricultural

practices, and growing conditions. The crop classifier was trained and validated on the years 2008–2014, then

tested independently on 2015–2018. Ecoregion-level crop classification performed better than state-level and

CONUS-level classification. Pixel-wise accuracy of classification for eight major crops by area was around

70% across the major corn-, soybeans- and winter wheat-producing areas, whereas regions characterized by

high crop diversity had slightly lower accuracy. Classification accuracy for dominant crops like corn, soybeans,

winter wheat, fallow/idle cropland and other hay/non alfalfa improved with time as they grew, reaching 90%

of year-end accuracy by the end of August over each of the four unseen years in the test period. For corn

and soybeans, the earliest dates of classification were found to be much earlier in the central regions of the
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Corn Belt (parts of Iowa, Illinois and Indiana) than in peripheral areas. The ability to map growing crops

may permit near real-time monitoring of the health status and vigor of agricultural crops nationally.

Keywords: Near real-time crop mapping, Phenoregions, Multivariate Spatio-Temporal Clustering,

Cropland Data Layer, Mapcurves, MODIS, NDVI

1. Introduction

Accurate and timely monitoring of crops over national scales is critical for crop production forecasts, water

management, assessment and management of disaster and disturbance impacts and characterizing land use

for Earth system modeling (Justice and Becker-Reshef, 2007; Waldner et al., 2015b). Federal agencies and

private businesses involved with crop insurance, food and feed processing and financial markets need alerts5

of impending crop failures and yield shortfalls to avoid human and livestock famine. Extreme events like

the 2010 heat wave in Russia and the 2012 drought in the United States (US) result in crop price volatility

for food-insecure regions of the world, necessitating an early warning system for agricultural production

shortfalls (Welton, 2011; Boyer et al., 2013). The Global Agricultural Monitoring (GLAM) Project (Becker-

Reshef et al., 2010) of the US Department of Agriculture (USDA) Foreign Agriculture Service (FAS), the10

Food and Agricultural Organization (FAO) Global Information and Early Warning System (GIEWS) (FAO,

2019), and the Famine Early Warning System Network (FEWS NET) (USAID, 1985) are continental or global

agricultural monitoring systems that provide information on crop conditions and production forecasting for

different countries in the world. These systems use a combination of social and remote sensing information,

but are generally limited to estimating net production rather than spatially mapping crops.15

Mapping the spatial extent and distribution of crops in a timely manner is necessary for near real-time

crop health monitoring (Waldner et al., 2015b). The US is a leading food producer in the world, generating

about 20% of world grain exports (USDA, 2019c); however, no spatially explicit national crop map is available

publicly during the current growing season (Cai et al., 2018). The USDA National Agricultural Statistics

Service (NASS) produces the annual Cropland Data Layer (CDL) (Boryan et al., 2011), a crop-specific land20

cover map for the CONUS at 30 m resolution, but the CDL is not released until the spring of the year

following the current growing season, at least four months after the current harvest. Although the USDA

issues weekly Crop Progress and Condition Reports (CPCR), tallying growth stages for major crops (USDA,

2019a), these are aspatial, tabular statistics that are often spatially aggregated to administrative units like

counties or states.25

Past studies have shown the possibility of mapping individual major crops like corn and soybeans with

sufficient accuracy as early as July–August (Zhong et al., 2016; Cai et al., 2018) and winter wheat by the end

of April (Skakun et al., 2017). Dahal et al. (2018) showed it was possible to map major crops across CONUS
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by the end of September of the current growing season. However, the scope of these studies was limited

either to only a few crops, or to particular counties, states, or groups of states. Near real-time national scale30

crop mapping is challenging because 1) crop phenology changes quickly over relatively short time scales, thus

requiring remote sensing data with a high temporal frequency, 2) crop-specific land cover maps, required

for model development, need to be available over large spatial scales, 3) crop phenology varies across space

due to differences in environmental growing conditions, 4) interannual variations in crop phenology caused

by variations in climate make a classifier trained on a single year perform poorly in another year, and 5) a35

spatial crop classifier needs to be efficient to be nationally scalable.

Unsupervised methods like k-means clustering, the ISODATA algorithm and Gaussian mixture models

have been used in the past to cluster features derived from a time series of remotely sensed vegetation indices

(Gumma et al., 2016; Skakun et al., 2017; Xiong et al., 2017; Wang et al., 2019). Crop type labels were then

assigned to these clusters using spectral matching techniques or using spatially aggregated crop statistics at40

the administrative level. Supervised methods like decision tree algorithms (Pittman et al., 2010), support

vector machines (Waldner et al., 2015a), random forests (Shao and Lunetta, 2012), neural networks (Shao

et al., 2010) and, more recently, deep learning approaches (Kussul et al., 2017; Zhong et al., 2019) have also

been successfully applied for crop classification at small scales. The choice of classification algorithm requires

considering the type and volume of data, target accuracy, ease of use, speed and scalability, usually posing45

trade-offs and compromises (Gómez et al., 2016). Recent studies have opted for a generalized classifier trained

on multiple years, instead of training on just one year (Zhong et al., 2014). Training on multiple years makes

the model more robust to phenology shifts due to interannual variations in climate. A model trained on a

sufficient number of years would not require re-training for the mapping year, allowing faster near real-time

crop mapping. Massey et al. (2017) used a generalized classifier to map major crop types across the CONUS,50

and found its performance to be almost at par with training and mapping within the same year.

One of the challenges in large area crop mapping is the variation in the timing of crop phenological

development across climate zones, since it is influenced by climate, soil, topography, etc., as well as farm

technology, management practices, fertilization, irrigation, etc. Growing degree days (GDD) can account

for some variations in crop development (Zhong et al., 2014; Skakun et al., 2017). Other studies performed55

crop classifications at the scale of smaller administrative units like Agriculture Statistics Districts (ASDs)

(Sakamoto et al., 2011), states (Zhong et al., 2016), or Agro-ecological zones (AEZs) (Massey et al., 2017), as

defined by the United Nations FAO for the year 2000 (Fischer et al., 2000). However, these approaches either

do not take into account variations in precipitation and soil properties, or are run within administrative or

political boundaries that are not relevant to crop phenology, or are too large to capture phenological variability60

with climate. Ideally, modeled regions would be described based on environmental variables that reflect crop
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growing conditions, and would be of small size, created using quantitative analytical methods that are

both empirical and reproducible. Multivariate Geographic Clustering algorithms have been successfully used

(Hargrove and Hoffman, 2004) to create ecoregions: regions on a map within which exist similar combinations

of ecologically relevant conditions like temperature, precipitation, soil and topographic properties.65

The objectives for this study were as follows:

• To create a national, crop-specific land cover map (with all of the crop types, as included in the

CDL) for the CONUS using time series of MODIS-derived Normalized Difference Vegetation Index

(NDVI) as inputs to a generalized cluster-then-label crop classifier. The model was trained at the

scale of individual quantitative ecoregions in order to address the spatial variability in phenology. No70

national-scale cropland maps are available prior to 2008. One of the goals of this study is to generate

national-scale crop maps for the years 2000–2007 using MODIS NDVI, before the CDL began. Having

national crop maps back to 2000 could help researchers studying land use/land cover change or modeling

long-term crop yield.

• To create crop maps in near real-time during the current growing season and to study the rate of75

increase in mapping accuracy as the season progresses for 8 major crop types grown in the US: corn,

soybeans, winter wheat, fallow/idle cropland, other hay/non alfalfa, alfalfa, sorghum and rice. While

accuracy may start low early in the growing season, it should improve as the crops grow and mature.

The ultimate goal was to estimate the earliest time by which each of the eight major crop types can be

mapped with reasonable accuracy across the entire CONUS within the current growing season.80

2. Study Area and Datasets

2.1. Study Area and Training Data

The Cropland Data Layer (CDL), a crop-specific land cover raster map available for the CONUS at

30 m resolution since 2008, was used as the ground truth for classification. USDA NASS creates the CDL

using a decision tree-based classifier that uses remote sensing data from Resourcesat-1 Advanced Wide Field85

Sensor (AWiFS), Deimos-1, UK Disaster Management Constellation-2, Landsat-5/7/8 and MODIS as inputs.

Crop type and acreage information collected in surveys from farmers during the current growing season are

used to train the CDL classifier. Non-agricultural areas in the CDL are taken from the National Land

Cover Database (NLCD) land cover, imperviousness and canopy categories. The CDL has self-reported crop

mapping accuracies in the range of 85–95% for major crop categories (Boryan et al., 2011), but the surveys90

used for training are not made publicly available.
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We downloaded the CDL for 2008–2018 from the USDA NASS Data Portal (USDA, 2019b). Our crop

classification model was trained over 2008–2014 and applied to the period 2000–2018. The period of 2015–

2018 was used as test years for the classifier. Our analysis focused on about 100 major agricultural land

cover types out of 122 categories included in the CDL. The study area for each year was obtained by masking95

out non-agricultural land cover categories like forests, pasture lands, shrub lands, open water, developed

spaces, etc. based on the CDL for that year. Provided in Albers Conic Equal Area projection, the CDL

was re-projected to Lambert Azimuthal Equal Area for the analysis using a nearest-neighbor resampling

technique.

2.2. Remote Sensing Data100

Time series of smoothed and gap-filled NDVI generated from Collection 5 data streams from Terra

(MOD13Q1) and Aqua (MYD13Q1) satellite instruments for the CONUS were downloaded from the Oak

Ridge National Laboratory (ORNL) Distributed Active Archive Center for Biogeochemical Dynamics (DAAC)

for the period 2000-01-01 through 2018-12-31 (Spruce et al., 2016). The MODIS NDVI data set, at a spatial

resolution of 231 m and an 8-day temporal frequency, was generated using the NASA Stennis Time Series105

Product Tool (TSPT) (Spruce et al., 2011) to remove clouds and otherwise clean and filter the time series

temporally. The smoothed, gap-filled data set is nearly complete, with few missing values, and is ideal for

many phenological analyses and applications. Files are available in netCDF format, one per year, for the

period 2000–2018, as a time series of 8-day maximum-value composited MODIS NDVI in Lambert Azimuthal

Equal Area projection.110

3. Methods

3.1. Development of Phenoregions

Phenoregions are regions having similar annual profiles of NDVI “greenness” phenology through space and

time (White et al., 2005). Phenoregions capture the gradients of climate and features of known vegetation

at large scales. Hargrove and Hoffman (2004) developed Multivariate Spatio-Temporal Clustering (MSTC)115

based on a non-hierarchical k-means algorithm (Hartigan, 1975) for classification of phenoregions (White

et al., 2005), classification of remote sensing data (Hoffman et al., 2010), analysis of dynamic climate regimes

in Global Circulation Models (GCMs) (Hoffman et al., 2008), and detection of disturbance from phenological

time series (Mills et al., 2011). A decentralized scalable parallel implementation of the method (Kumar et al.,

2011) was employed for the creation of phenoregions in this study (Figure 1(a)). The entire MODIS NDVI120

time series (2000–2018) was used with MSTC to delineate 5000 phenoregions having similar annual phenolog-

ical profiles. For this study, the exact number of phenoregions is not critical as long as they are fine enough to
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separate phenological diversity sufficiently to distinguish different crop types. MSTC does not explicitly use

geographic location during classification and does not impose spatial contiguity. Thus, a phenoregion may

be comprised of many spatially disjoint agricultural fields, so long as they have similar phenological profiles.125

After being classified among 5000 phenoregions, the data are mapped back to geographical space to create

a spatial map. Our method created 19 annual phenoregions maps, one per year during 2000–2018. While

MODIS NDVI-based phenoregions were generated at 231 m resolution, they were regridded to 30 m using the

nearest-neighbor resampling technique to match the CDL resolution. Upsampling MODIS resolution phe-

noregions to CDL resolution does not add any information content, but allows all analysis to be performed130

at native CDL resolution. The reverse option of downsampling CDL to MODIS resolution would have led

to loss of information content in CDL. For each year during 2008–2018, the phenoregions corresponding to

non-crop areas were masked out using the cropland extent from the CDL for that particular year, as shown

in Figure 1(b).

3.2. Spatio-temporal Variability in Crop Phenology135

We partitioned variability in crop phenology across time from phenological variability over space. Weather

conditions experienced by agricultural regions exhibit immense inter-annual temporal variability that has key

implications for planting and harvesting dates, and for the choice of crops planted. Figure 2(a) shows temporal

variability in phenology during 2008–2012 in a highly diverse agricultural region spanning parts of southern

Nebraska and northern Kansas. At the continental scale, agricultural regions show spatial variability in140

phenological timing caused by climate, soils, growing conditions, and crop rotation and management practices.

For example, corn growing in northern and southern Kansas during the year 2013 exhibits different phenology,

perhaps caused by differences in planting dates, in cultivars and in growing conditions (Figure 2(b)). At such

spatial scales, phenological signatures of a crop type can show large variations, thus causing an overlap with

the timing of other crops types, leading to poor classification accuracies. This spatio-temporal variability145

in crop phenology adds complexity in phenology-based identification of crop types. We address temporal

variability by training the classifier on multiple years, and we address spatial variability using ecoregions

(Section 3.3), thus developing a more robust and accurate general crop classification model.

3.3. Climatic Ecoregions

To avoid classification errors due to spatial variability in phenology, we used ecoregions to segment the150

landscape, and we developed a separate crop classification model optimized within each ecoregion. Ecoregions

group together areas with similar climatic, topographic and edaphic conditions. Clustering algorithms have

been widely used for classification of ecoregions (Hargrove and Hoffman, 2004; Williams et al., 2008; Kumar
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(a) Temporal variability in phenology during the period 2008–2012 in
a small diverse agricultural region that spans parts of southern
Nebraska and northern Kansas

(b) Two corn-growing regions within the state
of Kansas show large variability in phenology
during the same year 2013

Figure 2: Crop phenology exhibits a wide range of spatio-temporal variability, thus posing a challenge for national-scale
crop mapping. (Plot shows the median (solid line), 25th–75th percentile range (dark shade), and 5th–95th percentile
range (light shade) of the annual NDVI profile.)

et al., 2011). We used the same MSTC algorithm (Hargrove and Hoffman, 2004) to divide the CONUS

into 500 synoptic ecoregions, representing regions with similar crop growing conditions (Figure 1(c)). The155

ecoregions were developed using 15 environmental variables characterizing bioclimate, topography and soil

conditions at 1 km resolution (Table S1).

3.4. Crop Classification Model

Since they result from a statistical unsupervised classification, phenoregions lack any kind of label identi-

fying any particular crop or vegetation type. As part of a cluster-then-label classification approach, a super-160

vision step was applied to map each phenoregion to a particular crop type, using the CDL. This supervision

step was not manual, but was automated, requiring no human interpretation or intervention. Figure 1(d)

summarizes the workflow for this study. Since the CDL is available only since 2008, the model was trained

and validated on the years 2008–2014 and tested independently on the years 2015–2018.

3.4.1. Cluster-then-label Model Training165

We labeled each entire phenoregion with a single crop type, based on majority spatial overlap, using

the CDL as a training data set. To account for spatial variability, crop type assignments were conducted

independently within each ecoregion across all years in the training period (2008–2014). Crop pixels from

the CDL and the spatially concordant pixels from phenoregions present within each ecoregion were randomly

divided into training (70%) and validation (30%) sets for each year (Figure 1(d i)). Mapcurves, a quantitative170

method that calculates the spatial concordance between two or more categorical maps and provides an

assignment of labels between the maps (Hargrove et al., 2006), was used to compare phenoregions with
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the CDL and assign crop type labels to entire phenoregions. Mapcurves calculates a pairwise Goodness-

of-fit statistic (GOF ) over all categories in the two maps being compared. The GOF statistic between a

phenoregion, P , with a crop type, C, was defined as follows:175

GOFP,C =
AP ∩AC

AP
× AP ∩AC

AC
, (1)

where AP and AC represent the area under P and C, respectively, and AP ∩ AC represents the area that

is common to P and C. The GOF statistic increases when areas in the two maps are spatially coincident,

but decreases from areas that are not overlapping, so that large crop areas are not selected preferentially.

The crop label having the highest GOF statistic was assigned to all the cells within that phenoregion, as

shown in Figure 1(d ii). Accounting for temporal variability, Mapcurves was applied to phenoregion and180

CDL maps over all years during the training period to generate a translation table, listing each phenoregion

and its single corresponding best-fit crop type label. With 5000 phenoregions, many phenoregions will be

assigned to the same crop type label, each representing a variation in climate, edaphic conditions, cultivar,

planting date, fertilization, irrigation, and other agricultural factors that may be used or encountered when

producing the same crop. In this way, automated supervised labeling of phenoregions across all agricultural185

regions within CONUS was done using Mapcurves, while accounting for spatio-temporal variability in crop

phenology. The ecoregion-specific Mapcurves models were applied to validation data sets, the random 30%

of data that was set aside each year during 2008–2014, and resulting crop classifications were compared with

the CDL to assess accuracy.

3.4.2. Model Evaluation Within the Test Period190

In addition to evaluating on the validation data collected during the period 2008–2014, we used the cluster-

then-label approach to create crop maps for the test years 2015–2018. Once the model was trained over the

period 2008–2014, unseen years 2015–2018 represented the operational scenario in which trained models

were applied and evaluated for their accuracy and applicability at CONUS scale, including within-season

classification.195

3.4.3. Within-season Mapping of Crops

We developed a methodology to map croplands at national scale in near real-time as they grow every 8

days (i.e., MODIS composited temporal frequency). The partial phenological MODIS NDVI to date at each

cropland pixel within CONUS was assigned to the most-similar phenoregion thus far. The assignment was

made by identifying the existing phenoregion whose profile minimizes the multivariate difference between the200

existing portions of the two NDVI profiles. Once assigned to a phenoregion, the existing trained cluster-then-
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Figure 3: Assigning crop labels to partial phenological trajectories using the cluster-then-label approach was restricted
to only those cropland pixels that satisfy a minimum greenness threshold. This greenup threshold was defined as 20%
of the annual amplitude (difference between the maximum and minimum) of NDVI for the phenoregion (shown in
blue), which is the most similar to the partial-year NDVI trajectory (shown on red).

label models (Section 3.4.1) were applied to determine the crop type for each pixel. However, the cluster-

then-label approach always assigns the best-fitting crop label to a partial NDVI trajectory, even before the

crop itself has been planted or has emerged. Early in the season, before crops have substantially emerged,

these closest crop type projections are unreliable, yet the best-fitting crop type will still be assigned. To205

prevent these early misclassifications, partial-year crop classifications were discarded until a minimum spring

greenness threshold, defined as 20% of annual amplitude of projected phenoregion, was reached (Figure 3).

For each crop in an ecoregion, the earliest within-season date by which the crop can be mapped with 90% of

the full-season accuracy was identified.

3.5. Evaluation Metrics210

3.5.1. Accuracy Assessment

While all crop types contained in the CDL were analyzed and mapped in our study, we focus our accuracy

assessment here on the 8 dominant crop types (by area across CONUS): corn, soybeans, winter wheat,

fallow/idle cropland, other hay/non alfalfa, alfalfa, sorghum and rice (but see Table S2 for accuracies for

all 102 crops, included in the Supplementary Material). Crop types other hay/non alfalfa and fallow/idle215

cropland are referred to as other hay and fallow, respectively in all tables and figures. Three metrics were

used to evaluate the accuracy of classification: Producer’s Accuracy , User’s Accuracy and Overall Accuracy ,

as defined in Equations 2, 3 and 4. Producer’s Accuracy is the accuracy of the map from the map producer’s

point of view, quantifying the probability that a feature class on the ground is correctly classified by the
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map. User’s Accuracy is the accuracy from the user’s perspective, and quantifies the reliability of the map,220

i.e., the probability that a feature on the map will actually be present on the ground. Overall Accuracy

quantifies the fraction of the reference CDL pixels that are correctly mapped by our crop classification

method. User’s Accuracy is the most relevant for a farmer or resource manager; thus, we focus our discussion

on User’s Accuracy , and include the Producer’s Accuracy statistics in the Supplementary Material. Errors

in classification sometimes happen due to similarity in the phenological signatures of multiple crops, but225

such confusion can be insightful. We report a confusion matrix with statistics, showing how omission and

commission errors are distributed across crop types.

Producer’s Accuracy =
Number of correctly classified pixels of a crop type

Total number of pixels of that crop type in the CDL map
× 100 (2)

User’s Accuracy =
Number of correctly classified pixels of a crop type

Total number of pixels of that crop type in the classified map
× 100 (3)

Overall Accuracy =
Sum of all correctly classified pixels for all crop types

Total number of pixels for all crop types
× 100 (4)

3.5.2. Shannon Diversity of Crop Types

Omission and commission errors due to confusion between crop types are larger in regions with diverse

crop types, and when the cultivated field sizes are smaller than the resolution of MODIS products. We230

calculate the Shannon Diversity Index (H) to quantify the diversity of crop types within an area:

H = −
∑
i

pi log pi, (5)

where pi is the proportion of map grid cells belonging to a crop type i in the mapped area. When only one

kind of crop exists in an area, H has a value of zero, and crop classification is easy. H increases when there

are more crop types present and their probabilities are more uniform within the area. Predictability of crop

types decreases with greater crop diversity and greater similarity in the proportional abundances of the crops235

grown in a region.

4. Results

4.1. Model Training to Address Spatial Variability

To address the spatial variability in phenology, independent cluster-then-label models were trained within

each ecoregion (Section 3.3), allowing models that are optimized for each region for higher accuracy. To240
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(a) Producer’s Accuracy when the model is trained
at CONUS, state and ecoregion scale

(b) User’s Accuracy when the model is trained at
CONUS, state and ecoregion scale

Figure 4: The cluster-then-label model shows an improvement in accuracy when trained and customized for smaller
regions, with ecoregion-based models showing consistently better performance for all the crop types.

test the benefits and efficacy of ecoregion-specific model training, we also conducted the cluster-then-label

model training by individual state for each of the 48 states, and as a single model for the entire CONUS.

Figure 4 shows the User’s Accuracy and Producer’s Accuracy for the model tested for 2015 when trained at

the scales of CONUS, by state, and by ecoregion, respectively. Training for smaller regions reduced the spatial

variability and thus allowed more specialized models for those regions. Ecoregions, derived based on climate,245

soil and topographic properties, consistently performed the best across all crop types, but models trained at

the scale of states provided good accuracy as well. Dominant crops like corn, soybeans and winter wheat are

often grown in large fields in concentrated regions of the country, with similar regional crop cultivars and

management practices. For such dominant crops, even a single model trained at CONUS-scale produced fairly

accurate results. Improvements in models trained at smaller scales of states and ecoregions are especially250

pronounced for crop types that are spatially distributed and/or exhibit a wide range of phenology. For the

rest of this paper, we present results based on models trained at the scale of ecoregions.

4.2. Mapping Crop Types across the Continental United States

Ecoregion-wise cluster-then-label models developed over the training period 2008–2014 were applied to

the annual MODIS NDVI-derived phenoregions for 2000–2018 to produce crop type maps for each year. The255

developed crop maps were statistically compared to the CDL to evaluate their accuracy. Evaluation using

the 30% validation data set across the period 2008–2014 shows a pixel-wise Overall Accuracy of 60–61%

for all crop types within CONUS, over 102 crop types (accuracy ranges for individual crops varied widely,

and were best for dominant-acreage crops, see Table S2 in the Supplementary Material). User’s Accuracy

for dominant crop types like corn, soybeans and winter wheat varies between 61–67%, 58–65% and 60–72%260
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Figure 5: Evaluation of the cluster-then-label model on 30% validation data collected across the period 2008–2014
gives good User’s Accuracy for eight commonly grown crop types across CONUS.

respectively, while for fallow/idle cropland, other hay/non alfalfa, alfalfa, sorghum and rice varies between

50–60% (Figure 5). Producer’s Accuracy (Figure S1) for dominant crops like corn and winter wheat varies

from 65–75% and 69–80%, respectively, and fluctuates between 30 and 40% for less dominant crops like

sorghum and rice.

The cluster-then-label model was also applied to the test data set with four never-seen-before years 2015–265

2018. Overall Accuracy for the years 2015–2017, over all 102 crop types, is slightly lower (compared to

2008–2014) at ∼58% and is 53% for 2018. User’s Accuracy (Figure 6) for the eight major crops are fairly

consistent over the four test years, with a small reduction compared to the 2008-2014 period, and perform

with ∼60% accuracy for primary crops like corn, soybeans and winter wheat except for 2018, when the User’s

Accuracy for corn drops to 54%. Pixel-wise Producer’s Accuracy for the eight major-area crops (Figure S2)270

show similar patterns except for sorghum and rice, which have ∼40% accuracy for all the years, and soybeans

in 2018, the accuracy of which drops to 39%.

Crop type spatial distribution predicted by the cluster-then-label model shows broad-level agreement with

the CDL (Figure 7(a)). Three small areas (A, B, and C) from geographically distributed agricultural regions

with a wide range of crop diversity were selected for a closer look (Figure 7(b)). Region A from the Corn Belt,275

where corn and soybeans are the dominant crops, shows broad agreement between the cluster-then-label -based

map and CDL. Disagreements between the two maps were prominent along the boundaries of the cultivated

fields owing to the coarser resolution of MODIS NDVI products. Region B in winter wheat-producing areas

in Kansas demonstrates broad agreement between the two maps. While CDL (at 30 m resolution) is able to

resolve the center pivot-irrigated fields very well, our cluster-then-label -based map lacks sharpness along fine280
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Figure 6: The cluster-then-label model was evaluated on the test data set from never-seen-before years (2015–2018).
User’s Accuracy for the eight major crops is similar across all the four years, except for fallow/idle cropland and
sorghum in 2017 and 2018 and corn in 2018.

field boundaries. Region C from Central Valley, California, exhibits immense diversity in crop types grown

across small-sized fields and thus represents a difficult-to-classify region; yet the cluster-then-label model is

able to classify the crop types in this region with reasonable accuracy. Specialty crops like peas, grapes,

almonds, walnuts, pistachios, etc. are often challenging to classify accurately (Table S2) as they are grown

on small, distributed fields that are smaller than the resolution of MODIS, and may not exhibit distinct,285

identifiable phenology. Even in the CDL, such specialty crops are based on reported data and are known

to have very limited accuracy (Boryan et al., 2011). The cluster-then-label model performs well in terms of

Overall Accuracy (Figure 8(a)) in major crop growing regions with large field sizes and lower diversity, but

has comparatively lower accuracy in regions with high crop diversity and smaller field sizes (Figure 8(b)).

The ecoregion-wise Overall Accuracy of pixel-wise classification for 2015 (Figure 8(a)) is∼70% across much290

of the Corn Belt, spanning eastern Nebraska, Kansas, Iowa, Illinois, Indiana and western Ohio. Accuracy

exceeded 85% in certain regions in major wheat-producing states like Kansas, Oklahoma and Texas. Accuracy

in more diverse crop-producing regions like eastern North and South Dakota, western Mississippi and eastern

Arkansas and Wisconsin is around 60%. Accuracy is around 50% in the Central Valley, California. Figure 8(b)

shows the Shannon Diversity of crop types (H) across the agriculturally-dominant ecoregions in CONUS.295

Much of the Corn Belt, growing mostly corn and soybeans, is uniform and has a low value of H. The Central

Valley in California, which provides more than half of the fruits, vegetables and nuts grown in the US, has a
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(a) Comparison of the cluster-then-label-based crop map with the CDL shows similar patterns at the
scale of the CONUS.

(b) A closer look at three select regions (A, B, and C) shows a broad-level spatial agreement with CDL,
but with some lack of sharpness and accuracy along field boundaries due to the coarser resolution of
MODIS products.

Figure 7: Comparison of the cluster-then-label-based crop map with the USDA Crop Data Layer (CDL) for the year
2015 at different scales.
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(a) Ecoregion-wise Overall Accuracy of cluster-then-label-based crop classification for eight
area-dominant crop types.

(b) Shannon Crop Diversity for agriculturally-dominant ecoregions across the CONUS.

Figure 8: Pixel-wise Overall Accuracy for cluster-then-label-based crop classification were found to be lower in regions
with higher crop type diversity. The Overall Accuracy/Shannon Crop Diversity values were calculated only for those
ecoregions which have at least 20% of their area covered by cropland.

high H, indicating a high diversity of crops, as do North and South Dakota, which grow multiple crops like

corn, soybeans, wheat, hay, sunflower, etc.

Table S2 show the model User’s Accuracy for all 102 crop types included in the study. Crop types which300

are grown in limited regions with low acreage, show high variability and modest to low classification accuracy.

Such rare crops offer limited samples for model training, and, in addition, training data quality is limited

due to the limited accuracy of the CDL. Nevertheless, over time, as the time series of available training data

grows, we expect the prognostic power of our models to improve.

4.3. Crop Mapping Accuracy at the Scale of Administrative Units305

Some users of agricultural data need actual, spatially-explicit crop type maps, but many government

agencies, private sector organizations, and scientists are interested only in tabular summaries of crop acreage
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(a) Scatter plots comparing county-aggregated crop
acreages for cluster-then-label-based crop map and
CDL

(b) Scatter plots comparing state-aggregated crop
acreages for cluster-then-label-based crop map and
CDL

Figure 9: Comparison of aggregated acreage estimated by cluster-then-label model with CDL during the test period
2015–2018 for eight area-dominant crops across CONUS. The dashed line represents the 1:1 line while the red line
shows the linear fit for estimated vs expected acreage. Accuracies for aggregated areas show substantial improvement
over pixel-wise accuracies in almost all cases, making cluster-then-label ideal for tabular crop acreage summaries.

totals over scales of administrative units like counties or states. Classified pixels from the cluster-then-label

method were aggregated to calculate acreage for each crop type at the county and at the state scale, and totals

were compared to corresponding acreages from the CDL (Figure 9). For the eight area-dominant crop types310

across the CONUS, good agreement exists between the aggregated cluster-then-label model and expected

CDL acreage at both county (Figure 9a) and state (Figure 9b) scales. There is a slight over-prediction in

corn acreages and under-prediction in acreages for soybeans at both scales during the test period (2015–2018),

possibly due to confusion between the two crop types. Fallow/idle cropland has a relatively lower value of

R2, attributed to a wide range of conditions (from bare soil to annual cover crop) that fallow/idle cropland315

may represent; thus, making it more prone to misclassification. Aggregated tabular crop acreage summary

products from the cluster-then-label model provide a high level of accuracy for applications at the scale of

county or state administrative units.

4.4. Within-Season Mapping of Crops

Within-season crop type classification was applied as crops grew in each of the four years from the320

test period (2015–2018) to test the practicality of mapping crops during the growing season. The model

was applied iteratively at every new eight-day interval using the partial-year NDVI observations to-date.

Figure 10(a) shows the performance of within-season crop type classification for the eight area-dominant crop

types across CONUS. As the growing season progresses, more crop pixels (shown on Figure 10(a)) surpass

the minimum greenness threshold and are able to be classified. 89% and 94% of all crop pixels of alfalfa and325

other hay grown across CONUS pass the greenup minimum by early-May and early-June, respectively. For
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major crops like winter wheat, corn and soybeans, more than 90% of pixels reach the minimum greenness

threshold by early-June, mid-July and mid-August, respectively. More than 90% of rice and sorghum pixels

exceeded the minimum greenup threshold by mid-August. Pixel-wise User’s Accuracy improves as crops

mature through the growing season and more phenology observations become available. While the accuracy330

of classification is low during early winter months, a large improvement is observed during July when corn

and soybeans reach maturity. The earliest possible date of classification, defined as the date by which the

within-season classification accuracy for a crop reaches 90% of the full-season accuracy, varies across crop

types, based on differences in their phenology profiles. Figure 10(a) shows the earliest possible date of

classification for eight major crop types for the year 2015. Winter wheat, corn and soybeans are classified at335

90% accuracy by early-August, mid-August and late-August, respectively. Fallow/idle cropland and other

hay/non alfalfa are successfully classified by mid-August, and alfalfa can be mapped by late-September. The

earliest possible date of classification for crops like sorghum and rice is around mid-November. These dates

show some inter-annual variability during 2015–2018, probably driven by different meteorological conditions

during the growing season, among other factors (Figure 10(b)). Earliest dates of classification occurred340

around late-July to mid-August for corn, varied between mid-July and late-August for soybeans, and varied

between the end of July and mid-August for winter wheat. The earliest date of classification for other hay/non

alfalfa varied between July to early August over the four test years. Sorghum and rice had the earliest dates

of classification, around mid-September to mid-November, and late-August to mid-November, respectively.

Variability in earliest classification date was relatively small for major crop types, and was larger for less345

dominant crops like other hay, rice and sorghum.

Earliest possible dates of classification are also spatially variable. Figure 11(a) shows spatial variability

in earliest date of classification across the top ten corn-producing states for the year 2015. Corn-producing

regions can be classified with 90% of full-season accuracy by mid-May across southern Minnesota, southern

Wisconsin and northern Iowa. By early-June, corn can be identified with 90% accuracy across eastern Iowa,350

much of Illinois, western Indiana and eastern Missouri. By early-August, corn can be identified in western

Iowa, eastern South Dakota and eastern Nebraska, and by late-October for eastern Indiana and western

Ohio. Earliest date of classification for soybeans is generally later than corn, achievable only by early-July

across western Ohio, Indiana, parts of western Iowa, southern Minnesota and eastern Nebraska. By the

end of August, soybeans can be identified across much of Illinois and Iowa, but cannot be identified until355

early-October in eastern parts of North and South Dakota and northern Missouri.
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(a) Improvement in pixel-wise User’s Accuracy through time for national crop mapping during the
growing season for the year 2015 is variable for different crops, but most can be mapped with 90% of
full-season accuracy by July–September (stars/numbers represent the percent of corresponding crop
pixels which have exceeded the minimum greenup threshold by that time).

(b) Inter-annual variability in the earliest possible date of classification is small for major
crops like corn and soybeans, compared to crops like sorghum and rice that show larger
variability, and are growing in smaller, more spatially scattered fields.

Figure 10: Pixel-wise classification accuracy for national crop mapping within the growing season, and the earliest
possible date of classification across the test period (2015–2018).
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(a) Earliest possible date of crop classification
for the top ten corn-producing states by area.

(b) Earliest possible date of classification for
the top ten soybeans-producing states by area.

Figure 11: Earliest possible date of crop classification for corn and soybeans during the year 2015 is highly variable
across space. In general, corn is identified with 90% of full-season accuracy several weeks before soybeans. Earliest
dates of classification are calculated for only those ecoregions which have at least 5% area of the respective crop.

5. Discussion

The goal of this study was to map crops across the CONUS during the active current growing season as

they grow, a critical step in near real-time crop health monitoring. The framework outlined here could be

extended to make periodically updated projections of yield as currently planted crops develop, thus aiding360

resource and economic planning and management at regional to national scales.

A cluster-then-label -based scheme was developed in this study that 1) classifies the croplands among

dynamic phenoregions based on MODIS-based phenology and then 2) using CDL as training data, indepen-

dently trains models within each ecoregion, to assign a crop label to an entire phenoregion. Ecoregions help

to address spatial variability in phenology due to differences in climate, soil and other growing conditions.365

Accuracy in crop type classification was improved when cluster-then-label models were trained within each

ecoregion, compared to being trained for individual states or the entire CONUS. However, the increase in

accuracy when going from state to ecoregion was modest for most crops, showing that even a state-level crop

classification was fine enough to capture most local geographic changes in climatic and edaphic conditions,

and farming practices like seed varieties, planting, fertilization and irrigation. Increasing spatial specificity370

to ecoregions yields diminishing returns in increased accuracy for major crops, but improvements are still

substantial for less-common crops.

Pixel-wise Producer’s Accuracy and User’s Accuracy for major crops like corn, soybeans and winter wheat

were greater than those of less-commonly grown crops during both training and testing periods. Major crops

are generally grown on large, spatially dense fields relative to the size of MODIS pixels (231 m), whereas375

less dominant crops are grown on smaller, scattered fields, resulting in mixed-pixels at MODIS resolution.
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Table 1: Pixel-wise confusion matrix for 2015 national crop type mapping (area in thousands of hectares). Diagonal
values (shaded) represent crop classifications that agreed with the USDA Crop Data Layer (CDL). Winter Wheat
abbreviated as Win Wht. Common classification confusions were corn for soybeans, winter wheat for fallow/idle
cropland, and other hay/non alfalfa for alfalfa.

Crop Data Layer
Corn Soybeans Win Wht Fallow Other Hay Alfalfa Sorghum Rice

R
e
c
la
ss
e
d

M
a
p

Corn 25,519 10,748 742 976 864 956 689 72
Soybeans 5,735 18,161 329 950 420 234 423 429
Win Wht 521 254 10,535 1,772 428 422 704 1

Fallow 328 464 1,008 5,709 733 254 222 84
Other Hay 1,088 916 477 706 6,272 1,271 76 2

Alfalfa 823 311 496 407 966 4,098 46 1
Sorghum 155 62 137 175 59 6 861 3

Rice 53 106 1 63 1 1 26 365

The CDL’s published accuracy also tends to be lower for lesser grown crop varieties (Boryan et al., 2011).

Accuracy was lower (∼10%) for all eight major crop types when the model was run on testing data from

unseen-years (2015–2018), as compared to the validation data set representing 30% of the data from 2008–

2014. The testing data came from unseen-years that were not used in training, thus potentially adding new380

phenological variation. Re-training after exposing the model to additional phenological variability from these

additional years would presumably increase classification accuracies even further.

While the cluster-then-label method exploits the salient differences in phenological development of the

crops, errors in the crop type classification sometimes remain, due to the inherent similarity in NDVI profiles

among crop types. Figure S3 shows box-and-whisker plots of NDVI profiles collected only from pure crop385

pixels (single crop type growing throughout the entire 231 m MODIS pixel) for major crops grown across

Kansas in 2010. Corn and soybeans profiles show close similarity, with soybeans having a slightly later time

to peak, due to their later sowing date. Phenology for winter wheat and fallow/idle cropland also are similar.

Land left fallow often has grass cover, which grows quickly at the onset of spring, potentially leading to

confusion with winter wheat. At the national scale, many of the classification errors occur between corn and390

soybeans, winter wheat and fallow/idle cropland and other hay/non alfalfa and alfalfa (Table 1).

Pixel-wise User’s Accuracy for corn and Producer’s Accuracy for soybeans are unexpectedly lower in 2018

as compared to the other test years (2015–2017). User’s Accuracy for corn decreases from 69% to 57% for the

four states: Iowa, Illinois, Indiana and Nebraska (Table 2) and the Producer’s Accuracy for soybeans drops

from 58% to 27%. The R2 for corn and soybeans increases after the year 2018 is dropped from the analysis395

(Figure S4). Soybeans were planted early in 2018 across these states (Figure S5), which made its shifted

NDVI profile more similar to that of corn, increasing confusion between these two crop types. Other crop

types everywhere, as well as corn and soybeans in other geographic regions showed pixel-wise classification

accuracies in 2018 that were similar to the rest of the novel testing years 2015–2017.
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Table 2: Pixel-wise mapping accuracy for the unusual year 2018 was lower in the four major crop-producing states:
Iowa, Illinois, Indiana and Nebraska due to earlier planting of soybeans, which resulted in lower accuracy at CONUS-
scale.

Accuracy Metric 2018 2015–2017

User’s Accuracy for Corn (%) 57 69
Producer’s Accuracy for Soybeans (%) 27 58

The cluster-then-label method for within-season classification classified major crops like corn and soy-400

beans with 90% of full-season accuracy by the end of August, almost two to three months before harvest

(Figure 10). Other hay/non alfalfa can be mapped earlier in the growing season (early-August). Earliest

dates of classification for smaller-area major crops like rice and sorghum is later in the growing season (be-

tween mid-September to mid-November), despite having roughly the same planting and harvest schedules as

corn and soybeans. Classification of rice and sorghum with reasonable accuracy takes longer in part because405

of confusion with dominant crops like corn and soybeans. Classification accuracies for rice and sorghum

increase in October and November, about when corn and soybeans are harvested.

Winter wheat is phenologically different from the other seven area-dominant crops in terms of its planting,

growth and harvest schedule. While we often tend to think of phenological cycle in terms of Gregorian calendar

(e.g., Figure 2), crop phenological cycles are more meaningful in terms of growing season. Winter wheat is410

planted around September and is harvested in the summer or early Fall of the following calendar year. Hence,

the phenological year for winter wheat spans across two calendar years. Figure 10 shows that winter wheat

can be mapped with sufficient accuracy by early- to mid-August. There is a sudden increase in the User’s

Accuracy for winter wheat from June to August. Separate special confusion matrices constructed for wheat

classification in May, June and July show that this improvement in accuracy is due to a decrease in confusion415

with corn and soybeans. In order to perform mid-season mapping for winter wheat, the monitoring period

should ideally begin from September of the previous year. Waiting to begin the monitoring in January results

in a loss of distinct phenological information in the first three to four months of wheat growth. Winter wheat

would be the only green crop during this period, presumably improving discrimination of this unique crop

type.420

Earliest possible dates of classification at 90% of full-season accuracy show spatial variability across

ecoregions, with dates ranging from early-May to late-October for both corn and soybeans. In general, 90%

of full-season mapping accuracy is achieved early in the central regions of Corn Belt (parts of Iowa, Illinois

and Indiana), as compared to the peripheral areas. Earliest dates of classification in the central Corn Belt

were earlier for corn (June–July) than for soybeans (July–August).425
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6. Limitations, Challenges and Future Steps

The ability to create a gap-filled remote sensing product that spans the whole CONUS is critical for

near real-time crop health monitoring and commodity yield predictions. It requires remote sensing products

that are corrected for missing values due to clouds/snow cover. NDVI values were used as an integrative

proxy to capture crop land surface phenology. Past studies have included additional spectral bands spanning430

optical, Near Infrared, Short Wave Infrared (SWIR) and Synthetic-Aperture Radar (SAR), as well as indices

that are derived from them, like Enhanced Vegetation Index (EVI), Green Chlorophyll Vegetation Index

(GCVI), Land Surface Water index (LSWI), Normalized Difference Tillage Index (NDTI), among others. The

addition of these bands and indices has been shown to improve classification accuracy, and future studies

could include such additional metrics. Cross-sensor fusion could create a data product with high spatial435

and temporal frequency. The Mapcurves algorithm and cluster-then-label model assigned a single crop label

(having the best Goodness-of-fit) to the entire phenoregion based on a single majority “winner takes all”

strategy; however, other overlapping crop types might also be significant. A fuzzy labeling approach could

be applied, or even more phenoregions could be used to distinguish even more-similar crop type phenology

profiles from each other. Given the amount of remote sensing and CDL data available, more sophisticated440

machine learning, deep learning or Bayesian algorithms could also be tested.

Prior work has shown impressive results, but often with more specialized models classifying fewer crops,

on smaller geographic regions, and/or tested on the same years as they were developed. We tested our

general crop classification and mapping rigorously, on novel future years with which the model had no prior

experience. Practical application of our crop classifier will likely be on the next unfolding growing season in445

the upcoming year, with unknown phenological deviations, and with which the model has no prior experience.

Despite the enhanced difficulty of realistic testing on unseen years, the R2 values of our general model were

reasonable across all eight area-dominant crops during normal phenological years within the CONUS.

Summing crop acreages by type up to ever-larger accounting units also generally increases the accuracies.

As we spatially aggregated, it is possible that some of the classification errors at the pixel level might be450

canceling out, leading to a dramatic improvement in accuracy results. Some prior efforts reported only these

greater accuracies from such spatially aggregated results, instead of cell-by-cell accuracy/confusion results.

The scale of results that are needed depends on the intended use, but, if actual spatially explicit national

maps of crops are required, then the relevant accuracies are those reported at that finest spatial scale. These

results are already nationally-scaled and predict all crop types, which are the desired features of a fully455

functional production system. We also have produced annual CDL-style maps from 2000–2007, during which

no CDL maps were produced, and have made them available to download for general use.
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Shifts in crop phenology from year to year were the major source of variability in crop mapping accuracy.

Extreme weather conditions, such as floods or droughts, that may significantly affect timing of crop planting,

resulting in unexpected shifts of deviations in phenology, can affect the accuracy of our phenology based460

classifications. For the year 2018, crop classification accuracies were unexpectedly low for the two crops,

corn and soybeans, in one particular four-state geographic area, the US “breadbasket”. Accuracies for other

crops in this same location, and for all crops outside this region, were comparable with the other novel years

during the testing period. Unusually early planting of soybeans, coupled with unusually fast phenological

development of soybeans (Figure S5), led to increased confusion between corn and soybeans within this region465

during this year.

These results underscore the overarching importance of inter-year phenological variability, and the resul-

tant effects on the timing of planting and development. The relatively fine distinctions between “normal”

phenologies of soybeans and corn can be overwhelmed by the magnitude of between-year phenological vari-

ability in some locations during some years. Similarly, crop failures and late re-planting will lower pixel-wise470

accuracies, as will any agricultural practices that alter the expected timing of phenological development upon

which the separation of crop types are distinguished.

The CDL, which served as our training data, itself is a classification product and likely contains errors

that will be propagated forward. Underlying ground-based observations used to train CDL themselves are not

publicly available for independent use or testing, due to privacy and proprietary agri-business concerns. The475

CDL, therefore, represents the only data source for training and testing crop classification approaches such

as ours. As crop mapping models increase in prognostic power, this limited availability of public, error-free

training data may become the greatest limitation to future progress in remote sensing-based national crop

classification.

The cluster-then-label method developed here could be fully automated and integrated into an online480

mapping system, like the United States Forest Service’s ForWarn (https://forwarn.forestthreats.org/).

ForWarn is a vegetation change recognition and tracking system that provides near real-time change maps

for the continental United States that are updated every eight days, using MODIS NDVI. ForWarn tracks

disturbance in all vegetation, not just forests, including potential disturbances in rangeland vegetation and

agricultural crops. Unlike forests that (usually) remain growing in the same places from year to year, farmers485

often plant different crops in the same field, using an unpredictable rotation system. If the crop planted

this year has been changed, the normal NDVI value that is used for baseline comparison with the current

observed NDVI will be inappropriate, and the relative crop health status shown by ForWarn will be incorrect.

However, if ForWarn could be provided with temporally improving maps of crop types planted in this current

growing season, then crop health could be monitored nationally every 8 days, along with the health of forests490
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and rangelands. Such spatially explicit crop predictions are possible, starting as early as August of the

current growing season.

7. Conclusions

Developing crop maps over large areas during the growing season is important for forecasting crop yield

and food production at national scales. The goal of this study was to produce national-scale crop maps at495

8-day intervals during the growing season. We first developed a cluster-then-label approach to create end-of-

growing season crop maps for CONUS. This was done using a generalized classification approach consisting of

two steps: 1) creating phenoregions based on Multivariate Spatio-Temporal Clustering of annual time series

of 8-day NDVI collected for every 231 m pixel on the ground across CONUS for the years 2000–2018, and 2)

assigning crop labels to phenoregions based on the degree of spatial concordance between crop growing areas500

and entire, individual phenoregions. Spatial and temporal variability in phenology increases the challenges

of national crop mapping and were addressed by training the cluster-then-label models within each ecoregion

and on multiple years (2008–2014), respectively. The resulting maps compare well with the CDL. Overall

accuracy of classification was around 70% across major corn, soybeans and winter wheat-producing regions,

while accuracy was lower in areas with greater crop diversity.505

We then used this approach to generate crop maps for CONUS well-before harvest, and to estimate the

earliest time during the growing season by which crops could be mapped with sufficient accuracy. Major crops

like corn, soybeans, winter wheat, fallow/idle cropland and other hay/non alfalfa could be mapped as early

as August across CONUS with 90% of the full-season accuracy. We also produced CDL-like maps for the

years 2000–2007, before any such maps existed, and we have made them available to download. More than a510

demonstration of feasibility on a limited geographic area or for only a few crop types, our cluster-then-label

method provides a fully scaled production capability for practical near real-time mapping of all crops as they

grow and mature across CONUS. Running updated projections of final crop yields for each planted crop

during the growing season, estimated from historical productivity data per hectare within each ecoregion,

may be a feasible next step.515
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Supplementary Material

Table S1: Environmental variables used for ecoregion delineation. These data are in the form of ∼1 km raster grids.

Variable Description Units Source

Bioclimatic Variables
Annual mean temperature ◦C Fick and Hijmans (2017)
Mean diurnal range ◦C Fick and Hijmans (2017)
Isothermality — Fick and Hijmans (2017)
Temperature seasonality ◦C Fick and Hijmans (2017)
Mean temperature of warmest quarter ◦C Fick and Hijmans (2017)
Mean temperature of coldest quarter ◦C Fick and Hijmans (2017)
Annual precipitation mm Fick and Hijmans (2017)
Precipitation seasonality mm Fick and Hijmans (2017)
Precipitation during the wettest quarter mm Fick and Hijmans (2017)
Precipitation during the driest quarter mm Fick and Hijmans (2017)

Edaphic Variables
Available water holding capacity of soil mm Global Soil Data Task Group (2000); Saxon et al. (2005)
Bulk density of soil g/cm3 Global Soil Data Task Group (2000); Saxon et al. (2005)
Soil carbon density g/m2 Global Soil Data Task Group (2000); Saxon et al. (2005)
Total nitrogen density g/m2 Global Soil Data Task Group (2000); Saxon et al. (2005)

Topographic Variables
Compound topographic index (relative wetness) – Saxon et al. (2005)

Table S2: Accuracy statistics for mapping all crop types during 2015. Weighted means and standard deviations were
calculated using crop acerages. Accuracy for all crops show a wide range of variability (demonstrated by minimum
and maximum) across 500 ecoregions within CONUS. While accuracies are reasonably high for dominant crop types,
they are lower for rare crops, which have low planted acerages.

# Crop Type Acerage (km2)
Accuracy

Weighted Mean Minimum Maximum Weighted Std. dev

1 Corn 372,793.59 61.19 2 79 7.49

2 Soybeans 251,526.78 64.36 0 83 6.25

3 Winter Wheat 140,492.48 63.89 0 85 12.73

4 Fallow/Idle Cropland 72,948.79 55.50 0 92 13.79

5 Spring Wheat 68,610.84 51.02 0 76 7.91

6 Alfalfa 45,884.73 45.77 0 65 8.56

7 Other Hay/Non Alfalfa 40,516.35 40.75 0 72 14.38

8 Cotton 28,259.60 58.48 0 87 22.67

9 Sorghum 12,800.39 57.14 0 86 10.83

10 Dbl Crop WinWht/Soybeans 7,228.45 60.65 0 83 11.51

11 Durum Wheat 5,989.68 38.31 0 57 5.90

12 Rice 5,795.32 53.49 0 73 13.80

13 Almonds 5,414.93 51.85 38 57 7.37

14 Sugarcane 3,329.55 69.39 0 77 8.33

15 Grapes 2,978.09 42.56 0 68 7.63

16 Sunflower 2,226.38 44.08 0 59 11.81

17 Sod/Grass Seed 1,977.72 59.51 0 79 14.23
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# Crop Type Acerage (km2)
Accuracy

Weighted Mean Minimum Maximum Weighted Std. dev

18 Dry Beans 1,745.38 43.20 0 78 14.49

19 Sugarbeets 1,621.11 52.60 0 100 8.29

20 Oranges 1,401.67 39.67 0 43 4.08

21 Potatoes 1,397.58 45.08 0 76 10.18

22 Peanuts 1,381.96 44.96 0 46 3.29

23 Dbl Crop WinWht/Corn 1,310.18 23.25 0 25 4.12

24 Peas 1,281.22 41.05 0 98 13.58

25 Walnuts 1,164.13 50.39 0 61 11.12

26 Barley 1,017.37 45.53 0 60 14.85

27 Millet 718.98 33.10 0 40 7.46

28 Apples 703.46 50.32 0 71 8.65

29 Dbl Crop Oats/Corn 423.29 17.07 0 26 5.11

30 Canola 368.85 37.43 0 42 9.35

31 Rye 306.04 21.37 0 98 7.50

32 Sweet Corn 277.88 22.59 0 61 17.47

33 Pistachios 276.62 44.16 0 47 5.94

34 Safflower 196.73 40.33 0 55 18.16

35 Clover/Wildflowers 190.14 30.09 0 31 4.46

36 Oats 108.52 15.21 0 100 12.69

37 Pecans 104.60 22.53 0 25 5.24

38 Other Crops 79.56 5.86 0 67 2.80

39 Onions 64.58 15.50 0 26 10.57

40 Hops 62.46 42.44 0 46 11.74

41 Citrus 53.60 13.20 0 19 3.33

42 Dbl Crop WinWht/Cotton 52.91 7.48 0 38 13.74

43 Lentils 41.57 14.02 0 80 7.03

44 Other Tree Crops 34.39 24.22 0 25 4.86

45 Herbs 33.86 12.80 0 75 16.20

46 Dbl Crop WinWht/Sorghum 31.37 8.42 0 20 6.99

47 Triticale 26.97 9.82 0 57 10.21

48 Cucumbers 26.51 17.71 0 47 9.96

49 Speltz 23.42 0.00 0 1 0.06

50 Carrots 22.05 18.18 0 58 14.57

51 Cherries 16.94 22.26 0 93 11.09

52 Pomegranates 16.54 4.24 0 12 4.39

53 Blueberries 15.31 40.78 0 43 9.47

54 Garlic 15.26 12.41 0 13 3.30

55 Forest 15.22 0.00 0 0 0.00
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# Crop Type Acerage (km2)
Accuracy

Weighted Mean Minimum Maximum Weighted Std. dev

56 Lettuce 14.71 6.14 2 8 3.32

57 Mint 13.00 2.04 0 12 4.38

58 Pop or Orn Corn 8.35 0.07 0 1 0.26

59 Misc Vegs and Fruits 6.51 59.94 0 70 24.95

60 Dbl Crop Lettuce/Cotton 6.09 0.00 0 0 0.00

61 Greens 5.79 28.90 0 30 6.09

62 Pears 5.42 34.62 0 43 19.04

63 Cantaloupes 5.17 21.82 0 28 12.50

64 Watermelons 4.46 3.74 0 29 9.79

65 Peaches 4.34 7.73 0 10 2.03

66 Flaxseed 3.00 0.80 0 25 3.21

67 Caneberries 2.69 0.86 0 5 1.95

68 Christmas Trees 2.31 2.05 0 11 0.89

69 Olives 2.19 12.47 0 32 8.91

70 Other Small Grains 2.01 0.00 0 0 0.00

71 Tobacco 1.78 18.88 0 39 18.41

72 Mustard 1.62 0.00 0 0 0.00

73 Cabbage 1.46 19.60 0 38 17.50

74 Radishes 1.07 5.06 0 8 5.46

75 Camelina 1.03 0.00 0 0 0.00

76 Squash 1.00 0.00 0 0 0.00

77 Barren 0.97 0.00 0 0 0.00

78 Dbl Crop Soybeans/Cotton 0.87 0.00 0 0 0.00

79 Dbl Crop Barley/Soybeans 0.79 25.67 12 32 13.15

80 Switchgrass 0.77 0.00 0 0 0.00

81 Cranberries 0.72 6.50 0 14 6.62

82 Pumpkins 0.72 4.45 0 12 6.11

83 Asparagus 0.65 1.85 0 4 2.44

84 Peppers 0.44 12.55 0 17 8.63

85 Buckwheat 0.43 0.00 0 0 0.00

86 Dbl Crop Corn/Soybeans 0.36 0.00 0 0 0.00

87 Broccoli 0.34 0.00 0 0 0.00

88 Chick Peas 0.32 0.00 0 0 0.00

89 Honeydew Melons 0.28 0.00 0 0 0.00

90 Dbl Crop Barley/Corn 0.24 0.00 0 0 0.00

91 Sweet Potatoes 0.24 1.20 0 27 5.78

92 Prunes 0.18 0.00 0 0 0.00

93 Celery 0.15 0.00 0 0 0.00
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# Crop Type Acerage (km2)
Accuracy

Weighted Mean Minimum Maximum Weighted Std. dev

94 Cauliflower 0.11 0.00 0 0 0.00

95 Plums 0.10 0.00 0 0 0.00

96 Vetch 0.09 0.00 0 0 0.00

97 Tomatoes 0.09 0.00 0 0 0.00

98 Shrubland 0.09 0.00 0 0 0.00

99 Pasture/Grass 0.06 0.00 0 0 0.00

100 Strawberries 0.06 0.00 0 0 0.00

101 Turnips 0.03 0.00 0 0 0.00

102 Rape Seed 0.02 0.00 0 0 0.00
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Figure S1: Producer’s Accuracy on validation data.

Figure S2: Producer’s Accuracy for test years.
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Figure S3: NDVI profiles from pure 231 m crop pixels for major crops grown across Kansas in 2010.

(a) Scatterplots comparing acreage estimated by
cluster-then-label model vs expected based on CDL
at the scale of county without considering data from
year 2018.

(b) Scatterplots comparing acreage estimated by
cluster-then-label model vs expected based on CDL
at the scale of state without considering data from
2018.

Figure S4: Comparison of acreage estimated by cluster-then-label with CDL during the test period 2015–2017 for
eight major crops across CONUS. The dashed line represents the 1:1 line while the red line shows the linear fit for
estimated vs expected acreage. R2 values improved for corn and soybeans after dropping the year 2018.
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Figure S5: Comparison of crop progress for corn and soybeans in 2018 v/s previous years for four major producers of
these crops.
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