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Onset of seasons are important!

e Land Surface Phenology (LSP) is remote sensing based
observation of seasonal pattern and variation in vegetation.

e Understanding and predicting onset of phenological seasons
are of ecological, conservation, economical and management
interest.

e Onset of seasons (and phenology in general) are sensitive to
weather/climate.

e Variability and trends in onset of phenological seasons are key
indicators of climate change.
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MODIS NDVI captures the phene 'gical stages of all vegetat‘ibn at
250m resolution, every 8 days.



Phenological Seasons

At 250m resolution MODIS captures the phenology of mixed
vegetation types, not a particular species.

We define phenological growth stages as indicator of onset of
seasons using LSP.

1. 20 % Left: “Start of Spring”

80 % Left: “Start of Summer”

Max. NDVI Greenness: “Season Peak”
80 % Right: “Start of the Fall”

20% Right: “Start of Winter”
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Provides non-species specific phenological milestones, that can be
applied across all vegetation across CONUS.
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Phenological Seasons

MODIS LSP (2000) for a pixel in Great Smoky Mountains.
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Phenological seasons defined are not observable (like bud burst,
leaf color/incision etc.) but are consistent with LSP and allows
continental (to global) scale analysis.
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What are our goals

e What are the key environmental drivers for onset of the
phenological seasons.

e And how do these drivers vary in their dominance across
different vegetation types within CONUS.

e Where and when are the phenological season predictable
based on environmental drivers.

e Understand inter-annual variability in onset of seasons and if
some vegetation types are more sensitive to environmental
drivers than others.
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Predictor variables from DAYMET

The Daymet dataset provides gridded estimates of daily weather
parameters. Seven surface weather parameters are available at a
daily time step, 1 km x 1 km spatial resolution, with a North
American spatial extent.

We developed five predictor variables from DAYMET.

1
2.
3.
4
5

Heat sum above 5°C since Jan 1 (daily max. temp.)
Cold sum below 5°C since Jan 1 (daily min. temp.)
Precip. sum since March 1 (rainfall)

Photoperiod (day length)

Humidity (vapor pressure deficit)

The variables were selected to capture broad environmental
drivers for all vegetation types in CONUS.
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Example pixel in GSMNP show how variability in meteorology

corresponds to variability in phenology.
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LSP based segmentation of the landscape

Diverse set of environmental conditions, vegetation
composition and diversity leads to a diverse phenological
response of vegetation across CONUS.

We use “Phenoregions” to segment the landscape in regions of
similar phenology for our analysis.

“Phenoregions” are developed using a unsupervised
classification approach on entire MODIS NDVI record to create
a phenological similar regions across CONUS. “Phenoregions”
are dynamic in nature, owing to dynamic vegetation
phenology, and thus capture temporal (inter- and intra-annual)
variability in vegetation greenness.
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50 Phenoregions acros CONUS used in our s@t
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Methodology

DAYMET derived predictors have different units of
measurement.

Standardize all variables between 0 and 1 based on min/max
observed over the record.

Fit multi-linear regression models within each phenoregion,
each year, for each each of the five phenological seasons.

Regression coefficients from multi-linear regression models can
be compared and ranked to show the importance of predictor
variable.

Rank five predictor variables in order of influence:
— for each season
— in each year

— in each phenoregion
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Start of Spring (2000)
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Start of Spring (2000)
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Start of Spring (2000)

Onset of spring season is highly T able e across CONUS. Heat. 8
photoperiod are dominant contro Fastern US, while precipitati }

plays an increasingly important role ¢ roplands/grasslands and. stern
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Onset of spring in conifers
is driven by heat and cold
sum, and photoperiod.
Precipitation is key in
some places.

2000 20pctleft conifer

Temperature (both heat
and cold sum) if the
most dominant driver
for onset of spring in
Eastern US.
Photoperiod also plays
an important role.

2000 20pctleft hardwood



2000 20pctleft crops

In addition to heat sum
and cold sum,
precipitation is a key
driver in croplands and
grasslands.

2000 20pctleft

Spring is fairly well
predictable in croplands
and grasslands.




Inter-annual variability in Spring onset
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El Nifio and La Nifa events affect the vegetation phenology, and
onset of the seasons.
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Inter-annual variability in Spring onset
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Predictability are reduced especially in La Nifia years when

o ) . N
precipitation and cold sum are influencing factor. RO

National Laboratory



Inter-annual variability in Spring onset

2000 20pctleft whichmax

R

2008 20pctleft whichmax A

Heat sum is the most dominant driver. However, during La Nina
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tart of Summer (2000)

Onset of Summer season has fairlylow predictability. Heat sum ar
precipitation are main influential drivers. AR



Season Peak (2000)

~croplands, grassland and shrubland _ a
main influential drivers. % 0AK RIDGE
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Peak season timing
for shrubs and grass
have fair
predictability.

2000 maxndvi shrub

Precipitation is an
important driver for
predicting season
peak in shrublands
and grasslands.

maxndvi grass



Start of Fall (2000)

and croplands in mid-west being le: S _
are the dominant predictor variables: o <% OAK RIDGE
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In shrublands in
Western US
precipitation is an
important driver for
onset of fall.

2000 80pctright shrub

Photoperiod is the
dominant driver for
onset of fall in
Eastern US forest
ecosystems.

2000 20pctright hardwood



Start of Winter (2000)

Onset of Winter season too has
continues to be a dominant predic
precipitation.
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Summary

e Onset of phenological seasons are influenced by not just one
but multiple environmental drivers.

e Influence of the predictor variables varies across vegetation
types, and across years.

e VPD was not negligible but least dominant driver.

e Dominant controls vary across seasons: heat sum being the key
driver for spring and summer; but cold sum and precipitation
are dominant drivers for fall and winter.

* ENSO events impact onset of seasons, especially spring and
summer.
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Limitations and Future Work

e Calendar year # phenological year

— we addressing that by defining phenological years, looking
at season/long term average to define phenological
progressions.

e Early season snow often create an artificial lows in NDVI and %
based phenological progress can be skewed.

e We hope to derive the relationship between environmental
drivers and phenology across vegetation types to inform land
surface models (benchmarking and validation)

e LSP doesn’t capture bud burst, leaf on, flowering, leaf color
etc. BUT they may not be needed for continental to global
(landscape) scale. There are no bud burst, or leaf colors in the
land surface models.
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Thank you for your attention!

ikumar@climatemodeling.org

This research was partially sponsored by the U.S. Department of
Agriculture, U.S. Forest Service, Eastern Forest Environmental
Threat Assessment Center and the Biological and Environmental
Research (BER) Program in the U.S. Department of Energy Office of

Science.
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Predictor variables from DAYMET
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The Daymet dataset provides R ¢
gridded estimates of daily '
weather parameters. Seven
surface weather parameters are
available at a daily time step, 1

km x 1 km spatial resolution, with
a North American spatial extent.
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Data available for 1980-2017
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Predictor variables from DAYMET

We developed five predictor variables from DAYMET.

1. Heat sum above 5°C since Jan 1 (daily max. temp.)
2. Cold sum below 5°C since Jan 1 (daily min. temp.)

3. Precip. sum since March 1 (rainfall)

4. Photoperiod (day length)
5

Humidity (vapor pressure deficit)

The variables were selected to capture broad environmental
drivers for all vegetation types in CONUS.
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Inter-annual variability in start of Summer
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Heat sum and precipitation are main influential drivers.
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Inter-annual variability in season peak
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Heat, cold and precipitation are main influential drivers.
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Inter-annual variability in start of Fall

2002 80petright whichmax
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Photoperiod, cold sum are the dominant predictor variables.
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Inter-annual variability in start of Winter
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Photoperiod continues to be a dominant predictor, in addition to cold

sum and precipitation %0AK RIDGE
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