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Potential NDVI as a baseline for monitoring ecosystem functioning
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Abstract. Baseline data are needed to determine the overall magnitude and
direction of change in ecosystem functioning. This letter presents an approach to
estimate potential NDVI from environmental variables and training data of actual
NDVI in nature reserves. Patterns of deviations of actual NDVI from the baseline
generally correspond with land-use types in the western United States.

1. Introduction

Numerous studies have shown that the Normalized Di� erence Vegetation Index
(NDVI) derived from the Advanced Very High Resolution Radiometer (AVHRR)
sensor data is related to ecosystem function, particularly net primary production
(e.g. Goward et al. 1985, Box et al. 1989). NDVI has been used to monitor desert-
i® cation (Tucker et al. 1991), land-use change (US Environmental Protection Agency
1997) and the e� ects of global warming in high latitudes (Myneni et al. 1997).
Comparisons can only be made across the three decades for which satellite sensor
data are available. Baseline data are not available to determine the total changes
in NDVI and, hence, in ecosystem functioning. Our objectives in this letter are
to implement the suggestion of Paruelo and Lauenroth (1995) about exploiting
relationships with biophysical factors to model potential NDVI and then to examine
the patterns of deviations of actual NDVI in terms of land uses.

2. Methods

The approach is to ® nd training sites where actual NDVI approximates baseline
values, formulate a model that best predicts these values, and apply that model to
biophysical predictors to map potential NDVI. The study area covers three states
(Washington, Oregon and California) in the western United States (® gure 1). This
regions spans 16 degrees of latitude and 10 degrees of longitude, with over 4000m
of topographic relief. Vegetation varies from cool, moist temperate rainforest to hot,
arid deserts. Major land uses include cultivation, urbanization, logging and grazing.
Thus the region provides a good sampling of environments and human land uses to
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Figure 1. Managed areas compiled by the Gap Analysis Program and used as a source of
training samples. Black lines delineate ecoregions.

explore the relationship between potential and actual NDVI and levels of environ-
mental stress.

A set of predictor variables was compiled based on precipitation, temperature
and soil characteristics at a resolution similar to the 1km NDVI data (table 1) (Daly
et al. 1994, Dodson and Marks 1997, Hargrove and Luxmoore 1998). The average
of a series of nineteen 14-day NDVI composites (Eidenshink 1992) values for each
1km pixel was computed as a measure of time-integrated NDVI (TI-NDVI) for
1990. The network of nature reserves has not experienced signi® cant environmental
stress from human activities (Paruelo and Lauenroth 1995). A random 5% sample
of pixels was extracted from a map of these managed areas (® gure 1) (Stoms et al.
1998) as training data for constructing the model.

Regression tree analysis (RTA, Venables and Ripley 1994) was used to build a
predictive model of potential TI-NDVI. RTA was run ten times on random 90%
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Table 1. Biophysical variables used in regression tree analysis of potential TI-NDVI.

Variable Description

PPTANN Mean annual precipitation, 1961± 1990
PPTGROW Mean precipitation in the growing season, 1961± 1990
SOLGROW Mean solar irradiance, 1983± 1991
JANTMP Mean January temperature, 1895± 1993
JULTMP Mean July temperature, 1895± 1993
SEASTMP JULTMP minus JANTMP, 1895± 1993
DDHEAT Degree-day heat sum, 1961± 1991
DDCOOL Degree-day cool sum, 1961± 1991
EL Digital elevation
AWC Available soil water capacity (STATSGO)
OM Total organic matter (STATSGO)
NITRO Soil nitrogen (STATSGO)
WATDEP Depth to seasonally-high water table (STATSGO)

samples and tested with the remaining 10%. The tree was pruned to the median
number of terminal nodes in the ten runs. The RTA model was then applied to GIS
layers of biophysical factors to produce a map of potential TI-NDVI for the study
area. The actual TI-NDVI map was subtracted from the potential map, creating a
di� erence image. A random 1% sample of pixels was analysed with respect to
aggregated land-use classes (Loveland et al. 1991).

3. Results

Regression tree analysis of biophysical data accounted for 79% of the deviance
in TI-NDVI for the training data (® gure 2). The ® rst division in the model was
between areas of low and high PPTANN. Of the drier sites, those with slightly more
precipitation were associated with higher TI-NDVI (Node B) in the high desert of
eastern Oregon and Washington compared with the hot deserts of southern California
(Node A). Of the wetter sites on the right side of the tree, colder JANTMP

Figure 2. Regression tree of environmental predictors of potential TI-NDVI. Variable names
are given in table 1.
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corresponds to lower TI-NDVI in the interior mountains, particularly where
JULTMP was also cool. For wet sites with mild winter temperatures, PPTANN
divided the wetter north coast from the drier south coast. AWC was the ® nal factor
to split wetter sites. PPTANN alone accounted for more than 61% of the total
variation in TI-NDVI. Temperature variables accounted for an additional 17%, and
AWC added approximately 1%.

The di� erence image depicts the deviations of the actual TI-NDVI from that
predicted by the RTA model (® gure 3(a)). The negative deviations (greater TI-NDVI
than predicted, in green) that immediately stand out are the large irrigated agri-
cultural areas of central California and eastern Washington (® gure 3(b)). Positive
deviations (lower TI-NDVI than predicted, in red) are most visible in smaller
patches, often urban areas.

Deviations varied somewhat as expected by land-use categories (® gure 4). The
Urban category tended to have positive deviations, indicative of a reduction in

(a) (b)

Figure 3. (a) Patterns of deviations between potential and actual time-integrated NDVI, and
(b) land-use/cover type map.
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Figure 4. Boxplot of deviations between potential and actual time-integrated NDVI by
land-use/cover type. The white bar indicates the median value of the deviation; the
shaded bars mark the quartiles of the spread in values.

photosynthetic activity. Agricultural land had the widest distribution and most
obviously negative deviation. Thus, agricultural lands in the study area tend to have
greater TI-NDVI in the satellite imagery than would be expected from climatic and
soils factors, owing to irrigation and fertilization. Mixed land, where agriculture and
native vegetation are interspersed within pixels, looks much like native vegetation
in the boxplot. Sparsely vegetated land shows a tendency towards slight positive
deviations. This result may be because the model slightly overpredicts TI-NDVI in
desert areas. The ǹative’ vegetation category includes all land-cover regions with
little or no agricultural uses. The distribution of deviations for the native vegetation
category was relatively narrow with a median near zero, as indicated by the position
of the white bar.

4. Discussion and conclusions
Periodic satellite remote sensing facilitates monitoring ecosystem functioning. In

this study, rather than using imagery to detect changes between two dates, we
have developed a simple predictive model of potential TI-NDVI in the absence of
human land-use e� ects. A model for the western United States used precipitation,
temperature and available soil water capacity data, which captured most of the
variation in TI-NDVI in undisturbed areas. Actual TI-NDVI deviated from potential
TI-NDVI in the direction expected in response to urbanization and agriculture.

We chose to model potential TI-NDVI in this study because its ecological
interpretation has been clearly established. Other vegetation indices have been
developed to rectify NDVI’s sensitivities or to provide complementary ecological
information (e.g. Lambin and Ehrlich 1996, Huete et al. 1997, Bass et al. 1998) and
should be considered for global monitoring. We believe that the type of empirical
modelling outlined in this letter could also be used for similar indices.

While this approach appears to be promising for monitoring environmental
stress, additional research is needed to corroborate these preliminary ® ndings.
Limitations of the present study can be categorized as those of AVHRR data,
sampling, modelling and validation. The model was developed using NDVI compos-
ites from a single year. NDVI metrics can vary signi® cantly between years in response
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to interannual di� erences in weather, local disturbance and sensor-related factors
(Tucker et al. 1991, Myneni et al. 1997). Further research is needed to determine the
optimal time period to represent baseline conditions. Training data for this study
were extracted from areas being managed for natural ecosystem processes but their
exact land uses and corresponding e� ects are not certain. Substantial e� ort will be
required to identify enough sites that are truly free of human disturbance to provide
an adequate sample of all environments. Finding su� cient numbers of sites will be
problematic in some parts of the world. While capturing broad patterns in TI-NDVI,
the model did not account for 21% of the deviance in the training data. Some of
this may be due to local variation. Modelling may be more e� ective by individual
ecoregions or by including ecoregions as categorical variables in the dataset. This
pilot study only evaluated deviations between potential and actual TI-NDVI against
mapped information on land use. Further work is needed to interpret the results
with higher resolution map or ® eld information to determine if apparent deviations
truly re¯ ect environmental stress. For all these reasons, we present the approach
developed in this letter only as a promising initial step.
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