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Abstract—Certain environmental processes, while influential,
are inherently difficult to quantify and detect using traditional
time series analyses, particularly among variables with different
seasonal progressions. Disturbances that only manifest in part
of a season (e.g., spring defoliation) or subtle climate shifts can
pose detection challenges when they occur in the presence of
other variability. Increasing sampling rates or even adding new
sensors may not reveal the anticipated patterns. Eddy covariance
tower data are a useful example for which various environmen-
tal drivers influence the overall signal, contributing noise and
seemingly discordant variation. While eddy flux data are a rich
representation of information, distinguishing expected seasonal
responses within a signal can be challenging, especially where
drivers may have either fast or lagged responses. A conventional
solution might be to analyze and effectively smooth the data over
daily to monthly intervals. However, such smoothed data will
not exhibit the same variance, and subsequent regressions may
not isolate relationships and anomalies to specific seasons. This
paper introduces and demonstrates the use of a newly developed
R software package, PolarMetrics, which is used to analyze 20
years of data from one AmeriFlux tower using a polar (circular)
approach that reduces data volume to a smaller set of derived
seasonal timing and magnitude metrics. Polar metrics quantify
the annual cycle of input variables, and permit direct comparison
of the strength and timing of seasonality. While performing the
analysis over all years produces a synoptic result, analyzing year-
by-year characterizes interannual variability.

I. INTRODUCTION

We introduce a new R software package, PolarMetrics,

for analyzing seasonal patterns of change in environmental

time series. A polar metrics data reduction approach to noisy

environmental data can aid in detection of seasonal and multi-

annual signals and relationships among variables.The exam-

ples in this paper are focused on relationships between multi-

ple environmental variables to carbon exchange, but the polar

approach is generic, and can be used to characterize the annual

cycles present in many environmental variables. Seasonal lags

in relationships between canopy ecosystem carbon exchange

and related environmental variables has been studied [1]. Here

we offer a complementary approach that further examines

inter-annual changes in timing, seasonality and the degree to

which these variables vary over inter-annual timescales. Linear

and regression analysis have already revealed insight about

the interplay of factors affecting ecosystem carbon exchange

processes, but a polar approach can provide additional insight

by (1) Isolating the analysis to just a portion of the year of

greatest activity/interest (e.g. summer extremes), (2) Reducing

data volume by expressing data through relatable seasonal

timing and magnitude measures that are comparable across

variables, and (3) Comparing environmental variables based

on the same calendar year or based on their own empirically

derived year, which is often shifted from the human calendar

year.

In this work we do not intend to fully explore and explain

the history and usage of polar transformation. While polar

transformation has a long history of use in atmospheric sci-

ences, engineering, and astronomy, more recently, a number

of noteworthy papers in ecological and environmental fields

have found new applications [2], [3], [4], [5]. While this

study focuses on the potential utility of polar metrics extracted

from multiple environmental data streams collected at a single

site, our intent in developing this R package and technique

concerns its application to land surface phenology data as part

of a landscape dynamics analysis system. That application,

however, will be described in future papers.

The process of translating time series into polar measures

begins with radial time coordinates and projecting the data

onto a polar plane, just as with wind direction data. The polar

coordinate data are transformed into vector components to

facilitate the calculation of several derived polar measures,

each of which quantify an aspect of the seasonal evolution

of the data. Table I gives some example output of three

polar metrics (early season day of year, late season day
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TABLE I
ANNUAL POLAR METRICS (ES: EARLY SEASON DOY, LS: LATE SEASON

DOY, SMA: SEASONAL MAGNITUDE) CALCULATED FOR AIR

TEMPERATURE, PRECIPITATION, AND NET ECOSYSTEM EXCHANGE.
TIMING METRICS, ES & LS, SHOW YEAR TO YEAR CHANGE IN THE RATE

OF SEASONAL PROGRESSION. MAGNITUDE METRIC (SMA) MEASURES

THE ASYMMETRY OR SEASONAL INTENSITY, DEFINED AS THE LENGTH OF

THE AVERAGE VECTOR BETWEEN ES AND LS.

Air Temperature Precipitation Net Ecosys. Exch.

Year ES LS SMa ES LS SMa ES LS SMa

1995 112 308 0.76 139 279 0.18 65 310 0.60

1996 111 300 0.76 96 236 0.11 64 309 0.61

1997 109 305 0.76 101 290 0.14 62 300 0.62

1998 101 304 0.79 93 296 0.10 61 306 0.60

of year and seasonal magnitude) calculated from hundreds

of measurements per environmental variable. Polar metrics

concatenate and summarize each year of measurements and

permit direct comparison on a year-to-year basis. An added

advantage of polar transformation is that timing metrics can

be calculated for the calendar year (e.g., days starting from

Jan 1), or can be instead calculated on a variable year that is

rotated to begin at the time of least activity of the variable,

which may be important for analyses that seek to compare

data across latitudinal, elevational, or other gradients.

II. METHODOLOGY

The PolarMetrics R package including documen-

tation, sample NDVI data, and example analyses

can be downloaded or installed directly from

https://github.com/bjornbrooks/PolarMetrics. The focus

here is to use the PolarMetrics package to evaluate seasonal

features in NEE and other eddy flux data. We also compare

the signal of NEE productivity against MODIS NDVI

extracted and averaged over the tower footprint. This paper

includes supplemental R code that was used to produce the

figures and results. These scripts are available separately from

https://github.com/bjornbrooks/PolarMetricsMSscripts. After

installing the PolarMetrics R package, the main program in

PolarMetricsMSscripts, mk_figs.R, reproduces the figures

and results contained in this paper. mk_figs.R handles the

downloading, loading, parsing, gap-filling, and plotting that

is summarized in Procedures 2–5 below.

A. Park Falls site and data description

The Park Falls eddy covariance tall tower (WLEF,

http://ameriflux.lbl.gov/sites/siteinfo/US-PFa) [6] is located in

northern Wisconsin and is among the tallest flux towers in

operation. Measurements from the 396 m level have a daytime

fetch on the order of 5 km, integrating over a landscape

of upland forests and wetlands. Winters can be cold and

long, and the forests are mainly deciduous but also include

a substantial coniferous fraction. Differences in wetland to

upland land cover and patchiness of the landscape due to

management contribute substantially to landscape heterogene-

ity [1]. Among over thirty available variables that are rou-

tinely collected, this paper focuses on the following four:

Procedure 1
# The following packages are suggested
# additions for PolarMetrics
install.packages(c("MODISTools",

"plotrix", "xts"))
# If not already present,
# install devtools
install.packages("devtools")
# Now install PolarMetrics
devtools::install_github(
"bjornbrooks/PolarMetrics")

download.file( # Download supp. material
paste("https://github.com/bjornbrooks/",

"PolarMetricsMSscripts/",
"archive/master.zip",sep=""),
destfile="master.zip")

unzip("master.zip") # Extract files
setwd("PolarMetricsMSscripts-master")
library(PolarMetrics) # Load library
source("mk_figs.R") # Reproduce figs

30 meter air temperature (TA, ◦C), precipitation (P, mm),

net ecosystem exchange from the 396 m level (NEE PI,

μmol CO2 m−2s−1), and incoming photosynthetic photon flux

density (PPFD IN, μmol Photon m−2s−1). WLEF tower data

were downloaded from the AmeriFlux data distribution por-

tal (http://dx.doi.org/10.17190/AMF/1246090). In addition to

WLEF tower data we added the Normalized Difference Veg-

etation Index (NDVI) as a remotely sensed vegetation index

for comparison to carbon balance (Net Ecosystem Exchange).

NDVI data from MODIS (http://modis.gsfc.nasa.gov/) data

subsets were downloaded using the MODISTools R pack-

age [7] for retrieving MODIS subsets through the Oak Ridge

National Laboratory (ORNL) DAAC web service (SOAP). The

NDVI data used here are a spatial average of 289 MODIS

pixels spanning a ∼4 km2 area surrounding the WLEF tower

(see get_modis.R script).

B. Step 1, Load data

First manually download and extract AmeriFlux BASE

data file (e.g., AMF US-PFa BASE HR 9-1.csv). These data

represent multiple variables collected over 21 years 1995–

2015). The supplemental code repository above contains a

master script, mk_figs.R, that will processes the data by first

loading the WLEF time series, as in Procedure 2. mk_figs.R
also automatically downloads MODIS NDVI data (2000–

2015), through a wrapper script get_modis.R, which re-

quires the MODISTools R package. WLEF data are smoothed

from hourly to 7-day averages (Fig. 1), while the NDVI data

are spline interpolated from 16-day to 7-day values. Note that

Procedure 2 outlines only the basic steps of data development.

For example a step not shown in Procedure 2 is gap-filling.

Gap-filling was achieved by replacing missing 7-day values

with corresponding averages for that point in the annual cycle.

That is, a series of 52 values (averages) was developed from
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Procedure 2
# Load hourly WLEF tower data
lef <- read.csv(
file = "AMF_US-PFa_BASE_HR_9-1.csv")

# Make time stamp variable into a
# date-time object
date.time <- as.POSIXct(
gsub("(.{8})", "\\1 ",

lef$TIMESTAMP_START),
format="%Y%m%d %H%M",
tz="America/Chicago")

# Make lef an xts object
lef.xts <- xts(lef, order.by=date.time,
tz = "America/Chicago")

lef.dy <- apply.daily(lef.xts, FUN=mean,
na.rm=T) # Calculate daily averages

ep <- seq(from=1, to=365,
by=7) # Define 7-day sampling points

lef.7dy <- rep(NA, 52*21) # Initialize
# output array

for (I in 1:21) { # Loop over all yrs
yr <- I + 1994
bidx <- 1 + (I-1) * 52
eidx <- bidx + 51
dy <- lef.dy[paste(yr)] # Use xts
# features to create annual subset

dy7 <- period.apply(dy, INDEX=ep,
FUN=mean, na.rm=T) # 7-day averages

lef.7dy[bidx:eidx] <- dy7 # Insert
# into output array

}

Procedure 3
# Load PolarMetrics
library(PolarMetrics)
# Extract days of yr from xts time index
t <- as.numeric(strftime(index(lef.7dy),

format = "%j"))
# Transform DOY to radians
r <- t2rad(t, dpc=365)

all the 7-day values by calculating the average value for each

7-day period in the year, across all years of data. Any given 7-

day period without a value was imputed by its corresponding

average.

C. Step 2, Calculate angles from calendar dates

Convert time series dates into radians in the range 0–2 pi

(Procedure 3). Now that time coordinates are transformed into

angles (radians) the environmental variable values (e.g., ◦C, %,

μmol m−2s−1) can be plotted on a polar plane (Fig. 2). This

reveals a series of overlapping orbits. The irregularities in the

orbits reflect variation in seasonality between years.
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Fig. 1. Example weekly time series of air temperature and NEE over four
example years (1995–1998)
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Fig. 2. Example polar plot of the same data as in Fig. 1. Dates are transformed
to radial coordinates, listed around the perimeter of the polar plot. January
1 occurs just after 0 pi. The calendar year progresses clockwise toward July
1, which occurs at about 1 pi and continues through December 31 at 0 pi.
Measurement values are expressed as the distance from the central axis, which
is standardized from 0 to 1 for each variable.
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Procedure 4
# Transform first variable into its
# component vectors
vecs <- calc_metrics(lef.7dy$TA,
yr_type="cal_yr", spc=52,
lcut=0.15, hcut=0.85,
return.vecs=TRUE)$vectors

# Repeat calculation and return overall
# average vectors (RV and AV)
avg_vecs <- calc_metrics(lef.7dy$TA,
yr_type="cal_yr", spc=52,
lcut=0.15, hcut=0.85,
return.vecs=TRUE)$avg.vectors

D. Step 3, Calculate polar vectors [optional]

The calculation of the component vectors is embedded

within the calc_metrics function, but the component

vectors can be output for specific analysis. calc_metrics
is a wrapper script that automatically calls several PolarMet-

rics base functions to derive the final annual polar metrics.

Setting the argument return.vecs = TRUE will return,

as a list object, the horizontal and vertical component vectors

in addition to the resultant and anti-vectors.

The resultant vector RV has a direction (angle) and force

(magnitude) proportional to the resultant force of all vectors,

and its anti-vector (AV), can be thought of as the point in the

year of least activity. Both of these vectors form a straight

line bisecting the polar graph into two areas of equal mass

(Fig. 3). That is, the sum of values to one side of the line

is equivalent to the sum on the other side. The segment

of the bisecting line pointing in the direction of the larger

seasonal values is the resultant vector, (RV). Its magnitude

(length), reflects the degree to which values are massed in

the direction of the average vector, and quantifies the strength

of seasonality. Highly seasonal data will have large average

vector magnitudes. In the opposite direction, the anti-vector

AV, is the least active period in terms of vector displacement,

indicating a logical average start of the “vector centered year”

(or the offset from the calendar year). Different environmental

variables (temperature, precipitation) will have seasonalities

with different values of AV. Furthermore, measurement of the

same environmental variable from different geographic loca-

tions can results in differing values of AV due to differences

in latitude, elevation, and other physiographic factors.

E. Step 4, Calculate polar metrics

The resultant vector and its anti-vector vector represent

aggregations over the entire input series. However, one novel

approach made possible by the vectorization is to divide the

time series into regular cycles (as in Table I) that begin and

end at the point of least seasonal activity (AV). One can

then examine differences in seasonality, which correspond to

each variable’s own empirically defined season. The empirical

seasonality of a series is frequently not synchronized to
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Fig. 3. Polar plot of one year of weekly averaged 30 m air temperature data
at WLEF showing resultant vector RV, its magnitude (or seasonality SMag),
and anti-vector AV, which defines the start of the vector centered year and
marks the offset of air temperature at WLEF from the human calendar.

calendar year, and AV can be extracted for use as a descriptive

metric of that degree of offset.

For many ecosystem processes, changes that are expressed

during a primary season, e.g., an interval of high plant

productivity or biogeochemical cycling, are often of greater

interest than changes that occur during periods of reduced

activity, which may contribute unwanted complexity to the

analysis. One way to emphasize a primary season of interest

is to exclude some portion of the year using defined fixed

thresholds for the season dates of interest. But this ignores

inter-annual variation. An alternative presented here is to use

thresholds for the cumulative annual totals themselves as they

accumulate throughout the year. How much data to exclude

from the beginning and end of each cycle is arbitrary (see

lcut and hcut arguments in calc_metrics), and can be

adjusted from 0–99% of the accumulated annual total, using

the calc_metrics function. Here we have excluded data

corresponding to the initial and final 15% of the cumulative

annual total for each year (see Fig. 4) resulting in the creation

of a primary-season subset containing 70% of the accumulated

total.

calc_metrics calls several base functions in the Po-

larMetrics package, principally sum_cycle, which as dis-

cussed above, accumulates values as a proportion of the total

within each year. window_idx subsequently identifies and

filters values that do not correspond to the primary season.

Ultimately, the metrics of interest are calculated from the

remaining subset for each year (in this case the 70% of

accumulated total surrounding the annual peak). The exact
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Fig. 4. Cumulative values and thresholds. Beginning from the seasonal
minimum values are cumulatively summed within each year. Early season
threshold (ES) is calculated as the day of year corresponding to 15% of the
cumulative total. The day of year generated by calc_metrics is given
either according to the calendar year (days since Jan. 1) or the variable year
(days since the average variable minimum).

timing of values that are included in the primary season subset

can differ from year to year based on the rate of accumulation

of values throughout the year. Also of key importance to note

is that annualized polar metrics (for the same given output

year from calc_metrics) can capture primary seasons that

occur in different times of the calendar year. Consider for

example the lag in temperature seasonality from seasonality

in insolation, or the seasonality of precipitation in the Eastern

US which is nearly 180 days out of phase with the peak of

precipitation in American Southwest. One should keep in mind

during any analysis that uses PolarMetrics that each input

variable has its own empirically defined start of year, AV.

Whenever AV is offset from the calendar year, both the initial

values prior to AV and final values after the last complete cycle

are discarded. Thus, any time series of n complete calendar

years will have n− 1 cycles in the resulting output.

The calc_metrics function is included in PolarMetrics

simply for convenience as a faster way to run the data

through all the steps of polar transformation. Any variety of

custom measures can be explored and calculated using the base

functions in the PolarMetrics package. See the source code in

the PolarMetrics/R/ directory.

Fig. 5 illustrates several timing and magnitude similarities

and differences among environmental variables at the WLEF

tower. Although NDVI, temperature, and precipitation all have

very different variances they can be compared in terms of

their peak in mid-season timing (MS). This contrasts from

Procedure 5
# Calc. polar measures for first variable
metrics <- calc_metrics(lef.wk$TA,

yr_type="CalYr", spc=52,
lcut=0.15, hcut=0.85,
return.vecs=FALSE)$metrics

Fig. 5. Polar plots showing timing and magnitude metrics for NDVI, NEE,
temperature, photon flux, and precipitation for the 2014 year as well as a time
series showing early season timing across all environmental variables for all
years. Timing metrics ES, MS, LS are shown by green vectors. Seasonality
(Smag) is given by the length of the red line. Note that RV marks the timing
of the average vector and AV marks start of the vector-centered year.

NEE and PPFD variables, which tend to peak about one

month earlier. Although these polar metrics are derivatives,

each measure represents a facet of the seasonal progression,

which is dependent on the entire season of values. If tracked

through time the dynamics of inter-annual variable change can

be explored, as shown in the sub-plot in the lower right of

Fig. 5.

III. RESULTS AND DISCUSSION

This paper introduces the PolarMetrics R package and

describes how to use it to derive seasonal timing and mag-
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nitude measures from environmental time series. Polar plots

have visual advantages in that they highlight departures from

seasonal patterns. Polar metrics have quantitative advantages

in that they enumerate differences between years (or cycles).

Polar metrics compactly characterize a variety of seasonal

features whose timing can be relevant to ecosystem function;

however, the same metrics (e.g., length of season) could be

similarly calculated by non polar approaches. This begs the

question: What advantage is gained from polar transformation?

Furthermore, ‘Do polar metrics help us recognize patterns that

are not otherwise apparent through time series analysis?’, and

‘Do polar metrics offer any computational savings?’

Above all, polar metrics are simpler to interpret than many

time series. Changes in seasonal timing, symmetry and am-

plitude are directly revealed in polar derived measures (see

Table I). Polar metrics also are a starting point for further

exploration of relationships between infrequently examined

and lagged metrics, which for example, could be explored

through a correlation matrix of the annual polar metrics values.

While a correlation matrix of seasonal measures could be

put together using non-polar approaches, it is the develop-

ment of vectors that gives the polar transformation approach

certain analytical advantages that are not possible through

conventional time series methods. The PolarMetrics package

facilitates new variations on analyses through its component

vector output (i.e., vecs in Procedure 4). Polar vectors have

a dual quality because they provide information about force

(intensity) and direction (timing) that can be instructional. For

example, in Fig. 6 we applied a 1-year sliding window function

to weekly component vectors generated by calc_metrics
in order to search for nonstationarity in WLEF NEE and

precipitation data and to investigate its source. For each

input time series a new series of resultant vector values

was calculated, each reflecting the timing (day of year) and

magnitude (seasonality from 0–1) for that 1-year interval.

Changes in the resultant vector reflect nonstationary behavior

in the underlying input data. Further, any changes can be

differentiated as being due to timing or seasonality through

the angle of the resultant vector (cf. RV, Fig. 3) or its length

(cf. SMag, Fig. 3).

Fig. 6 shows four time traces revealing that in terms of

timing both NEE and precipitation at WLEF appear to be

trend stationary, showing only what appears to be white noise

variance. NEE and precipitation seasonality on the other hand

have a particularly non-random nonstationarity that recurs on

fairly regular 4-year cycles, which could be due to a regional

interannual driver (e.g. El Niño). While this analysis did not

reveal a trend stationary result, which would indicate some

deterministic processes, it is nonetheless useful and suggests

a higher degree of autocorrelation in the data with respect to

seasonality than with regard to timing.

While the data reduction and computational savings poten-

tial of the polar metrics technique is particularly attractive, so

far we have not discussed the differences in representativeness

between polar metrics and their original time series. While

we cannot comprehensively deal with this topic here, we
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Fig. 6. Sliding window analysis of the magnitude (seasonality) and timing of
the resultant vector (RVec) for NEE and precipitation. Notice that there does
not appear to be a clear trend in the magnitude of NEE or precipitation at
WLEF, but there do appear to be fairly regular 3–4 year excursions. Excursions
in seasonality are only sometimes coincident with excursions in timing of the
average vector.

have included results from a simulated representativeness

experiment. As one test of how well polar metrics capture

variation in data as compared to the original time series,

we used an unsupervised stratified sampling algorithm (k-

means) to differentiate the degree to which time series or polar

metrics capture dominant axes of variability. An optimized

measurement system should allow for partitioning of its data

into groups that are highly dissimilar, but at the same time

containing groups within which similarity is high. One way

to measure this is the ratio of the total within-cluster sum of

squares (WSS) divided by the total sum of squares (TSS). Low

within-cluster dissimilarity indicates ideal representativeness,

where the average variance within the cluster groups (WSS)

is very small relative to the global variance. Contrasting time

series cluster results against polar metric results across a range

of cluster divisions should reveal insight into how robustly

these two data sets express change. However, the results

are only significant insofar as the input data are considered

relevant.

The MODIS NDVI data from Fig. 5 were re-used in this

simulated experiment to generate time series and polar metric

inputs for clustering. Rather than averaging the 289 MODIS

pixels as before, each pixel and year was clustered based on

its series of 52 weekly NDVI values. The time series input

was reformed into a 4335 x 52 matrix representing 4335 pixel-

years (289 pixels x 15 years). This generated an input matrix

for clustering where each column of the matrix represented a
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Fig. 7. Representativeness test. Ideal representativeness here is measured as
low within-cluster dissimilarity (within-cluster sum of squares / total sum
of squares). The k-means clustering algorithm, which minimizes variances,
is used to evaluate time series and polar metric representation of the same
NDVI data (289 MODIS pixels, 2000-2015). NDVI data represented through
polar metrics form more distinct and coherent groups than time series at any
given number of divisions, and the polar metric clustering takes less than half
the time to complete.

weekly sampling point and each row a pixel-year of values.

The polar metric input was generated by first passing the same

time series values through the calc_metrics function,

then reforming it to yield a matrix of 4335 x 11 values, also

4335 pixel-years, where each of the 11 columns was a polar

metric (e.g., length of season) describing an aspect of the

annual pattern. Thus the essential difference between the input

data were that one described the annual pattern through weekly

NDVI values, whereas the other described the annual pattern

through polar metrics.

Fig. 7 shows that across separate trials that varied the

number of cluster divisions from 2–2048, clustering polar

metric values resulted in lower within-cluster dissimilarity

relative to the total variance of the input. This indicates that

cluster centroids from polar data were computationally easier

to group into representative clusters. While polar metrics in

this case were grouped with greater relative-accuracy than

time series this could be due to the reduced dimensionality

(11 vs. 52), which is not the same as the capacity of the 11

variables to measure changes that are of interest. Through this

test alone we cannot determine if the better performance of

polar metric clustering is due to transformation of the data

into ideal measures or reduced dimensionality, but this could

be explored in future work.

An additional caveat for the PolarMetrics technique is

that missing values must be gap-filled. Seasonal metrics

are calculated based on the accumulation of annual values,

therefore any missing values will bias the seasonal statistics.

In this paper missing weekly averages were imputed from

an average annual series. Gap-filling weeks (rather than the

original hourly values) is a simple approach for reducing

error probabilities of imputed values, although more rigorous

Bayesian approaches are also possible.

In this paper we introduced the PolarMetrics R package,

which we developed as a customizable tool for accelerating

the analysis of environmental time series. PolarMetrics is gen-

eralizable and simple enough to be used to analyze data over

long, or unusual multi-annual cycles, as well as shorter diel

cycles. For interannual cycles, naturally one would typically

first deseasonalize the time series, after which all the same

steps can be applied (the argument spc in calc_metrics
should be set to the correct number of samples in each cycle

of interest e.g., for a two year cycle of weekly data, spc =
104).
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