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Visual Reconciliation of Alternative
Similarity Spaces in Climate Modeling

Category: Research

Fig. 1: Iterative visual reconciliation of groupings based on climate model structure and model output. Visual inspection of
similarity coupled with an underlying computation model facilitates iterative refinement of the groups and flexible exploration of
the importance of the different parameters.

Abstract— Visual data analysis often requires grouping of data objects based on their similarity. In many application domains re-
searchers use algorithms and techniques like clustering and multidimensional scaling to extract groupings from data. While extracting
these groups using a single similarity criteria is relatively straightforward, comparing alternative criteria poses additional challenges.
In this paper we define visual reconciliation as the problem of reconciling multiple alternative similarity spaces through visualization
and interaction. We derive this problem from our work on model comparison in climate science where climate modelers are faced with
the challenge of making sense of alternative ways to describe their models: one through the output they generate, another through
the large set of properties that describe them. Ideally, they want to understand whether groups of models with similar spatio-temporal
behaviors share similar sets of criteria or, conversely, whether similar criteria lead to similar behaviors. We propose a visual analyt-
ics solution based on linked views, that addresses this problem by allowing the user to dynamically create, modify and observe the
interaction among groupings, thereby making the potential explanations apparent. We present cases studies that demonstrate the
usefulness of our technique in the area of climate science.

1 INTRODUCTION

Grouping of data objects based on similarity criteria is a common anal-
ysis task. In different application domains, computational methods
such as clustering, dimensionality reduction, are used for extracting
groupings from data. However, in the real world, with the growing
variety of collected and available data, group characterization is no
longer restricted to a single set of criteria; it usually involves alterna-
tive sets. Exploring the inter-relationship between groups defined by
such alternative similarity criteria is a challenging problem. For exam-
ple, in health care, an emerging area of research is to reconcile patient
groups based on their demographics and based on their disease his-
tory, for targeted drug development [34]. In climate science, an open

problem is to analyze how similar outputs from model simulations can
be linked with similarity in the model structures, characterized by di-
verse sets of criteria. Analyzing features of model structures and their
impact on model output, can throw light into important global climate
change indicators [19].

To meet these challenges, the data mining area has developed
redescription algorithms for quantifying and exploring relationships
among multiple data descriptors [23]. These techniques have focused
on mining algorithms for binary data, where objects are characterized
by the presence or absence of certain features. Group extraction based
on such computational methods are generally heavily influenced by
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Fig. 2: Conceptual model of visual reconciliation between binary model structure data and time-varying model output data. Iterative creation
of groups and derivations of relationship between output similarity and importance of the different model structure criteria. Blue and orange
indicate different groups of models.

parameter selections. Also, it usually takes multiple iterations to find
a perfect solution; and in most cases, only approximate solutions can
be found. Domain experts need to be involved in this iterative process,
utilizing their expertise for controlling the parameters. This necessi-
tates a visual analytics approach towards group extraction and recon-
ciliation of such groups created based on alternative similarity criteria.
Currently, there is a lack of visual analytics techniques that can han-
dle the complexity of the reconciliation process, especially involving
domain experts.

To fill this gap, we introduce a novel visual analytics paradigm: vi-
sual reconciliation, which is an iterative, human-in-the-loop process
for reconciling alternative similarity spaces. The reconciliation tech-
nique involves a synergy of computational methods, adaptive visual
representations, and a flexible interaction model, for communicating
the relationships among the similarity spaces. While the technique is
domain-independent, and generally applicable to different similarity
spaces, we use climate science as a specific use case for illustrating
the benefits of our technique.

Our concept of visual reconciliation is grounded in our experience
of collaborating with climate scientists as part of the Multi-Scale Syn-
thesis and Terrestrial Model Inter-comparison Project (MsTMIP). An
open problem in climate science research is how to analyze the effect
that similarity and differences in climate model structures have on the
temporal variance in model outputs. Recent research has shown model
structures can have significant impact on variability of outputs [14],
and that, some of these findings need to be further investigated in de-
tails for exploring different hypotheses.

To achieve these goals, we propose an analysis paradigm for recon-
ciling alternative similarity spaces, that leverages the high bandwidth
of human perception system and exploits the pattern detection and op-
timization capabilities of computing models [2, 16] The key contribu-
tions of this work stems from a visual reconciliation technique (Fig-
ure 2) that i) helps climate scientists understand the dependency be-
tween alternative similarity spaces for climate models, ii) facilitates
iterative refinement of groups with the help of a feedback loop, and iii)
allows flexible multi-way interaction and exploration of the parameter
space for drilling down into patterns of interest.

2 MOTIVATION

Why do we need to define a new visual analytics technique? Recon-
ciling alternative similarity spaces is challenging on several counts:
i) data descriptors can comprise of different attribute types. From
a human cognition point-of-view, reconciling the similarity of cli-
mate models across two different visual representations is challeng-
ing. There needs to be explicit encoding of similarity [10] that helps
in efficient visual comparison and preserve the mental model about
similarity. Moreover adaptation of similarity needs to be reflected by
dynamic linking between views and by preventing change blindness.
ii) for aligning two different similarity spaces, say computed by two
clustering algorithms, we will in most cases get an approximate result.
The result will need to be iterated upon with subsequent parameter tun-
ing to achieve higher accuracy. This necessitates iteration, and there-
fore a human-in-the-loop approach. iii) domain experts want to trust
the methodology working at the backend and the flexibility to tune

parameters and understand their interaction. Fully automated meth-
ods do not allow that. Thereby, a user-driven approach is necessary
where parameters in similarity computation can be influenced by user
selections and filters. In this section we provide context to the visual
reconciliation technique by discussing the background with respect to
climate models. As mentioned before, the technique is not restricted
to climate models, but for simplifying our discussion, in this paper we
specifically discuss the applicability of the technique in the climate
modeling context.

2.1 Problem Characterization

Climate models, specifically, Terrestrial Biosphere Models (TBM)
represent time and space variable ecosystem processes, like, simu-
lations of photosynthesis and respiration, using different algorithms.
Our visual reconciliation technique has been developed in the context
of structure and output of these TBMs.
Model Structure: A model simulation algorithm can have different
implementations of a process. These implementations are different
from each other due to the presence or absence of different criteria, that
control the specific process. For example, if a model simulates photo-
synthesis, a group of criteria like simulating carbon pools,
influence of soil moisture, and stomatal conductance
can be either present or absent. Thus, a model structure is a function
of these criteria. If there are c criteria, there can be 2c combinations of
this function. There are 4 different classes of criteria, with each class
comprising of criteria which is of the order of 20 to 30 in number.
Model Output: Model simulation outputs are ecosystem variables
that help climate scientists predict the rates of carbon dioxide increases
and changes in the atmosphere. For example, Gross Primary Produc-
tivity (GPP) is arguably the most important ecosystem variable, indi-
cating the total amount of energy that is fixed from sunlight, before
respiration and decomposition. Climate scientists need to understand
patterns of GPP in order to predict rates of carbon dioxide increases
and changes in atmospheric temperature.
Relationship between model structure and output: One of the open
research questions in the TBM domain is how similarity or differences
in model output can be correlated with that in model structures. The
heterogeneity of model structure and model output data make it com-
plex to derive one-to-one relationships among them. Currently, in ab-
sence of an effective analysis technique, scientists manually browse
through the theoretically exponential number of model structure com-
binations, and analyze their output. This process is inefficient and also
ineffective owing to the large parameter space which can easily cause
important patterns to be missed.

To address this problem we focus on using visual analytics meth-
ods for addressing the following high-level analysis questions: i) given
all other factors remain constant, analyze how different combination
of parameters within model structure cause similarity or difference in
model output, and ii) by examining time-varying model outputs at dif-
ferent regions, understand which combination of parameters cause the
same clusters or groups in model output.
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2.2 Visual reconciliation goals
For addressing the aforementioned challenges, we have devised the it-
erative visual reconciliation technique comprising of automated com-
putation of similarity functions and coordinated multiple views. As
illustrated in Figure 2, the visual reconciliation technique enables cli-
mate scientists to i) start analyzing model structure and use that as
feedback for reconciling similarity or differences in model output, and
ii) start analyzing model output and use that as a feedback for com-
paring similarity or differences in model structure. The reconciliation
framework focuses on three key goals which are as follows:
Similarity encoding and linking: For providing guidance on choos-
ing the starting points of analysis, the visual representations of both
structure and output encode similarity functions. Subsequently, sci-
entists can use those initial seed points for reconciling structure char-
acteristics with output data, or conversely, for reconciling output data
with structure characteristics.
Flexible exploration of parameters: The visual feedback and inter-
action model adapts to the analysts’ workflow. Scientists can choose
different combinations of parameters, customize clusters on model
structure and model output side and accordingly the visual representa-
tions change, different indicators of similarity are highlighted.
Iterative refinement of groups: By incorporating user feedback in
conjunction with a computation model, the reconciliation technique
allows users to explore different group parameters in both data spaces
and iteratively refine the groupings. The key goal here is to understand,
which criteria in model structures are most important in determining
how the outputs are similar or different over time.

3 RELATED WORK

We discuss the related work in the context of the following threads of
research: i) automated clustering methods proposed in the data min-
ing community for handling different data descriptors, ii) integration
of user feedback for handling distance functions in high-dimensional
data, and iii) visual analytics solutions for climate modeling.

3.1 Clustering Methods
Different clustering methods have been proposed in the data mining
community have been proposed for dealing with alternative similar-
ity spaces. Pfitzner et al. proposed a theoretical framework for eval-
uating the quality of clusterings through pairwise estimation of sim-
ilarity ([24]). The area of multi-view clustering [3] analyzes cases
when data can be split into two independent subsets. In that case
either subset is conditionally independent of each other and can be
used for learning. Similarly, authors have proposed approaches to-
wards combining multiple clustering results into one clustered output,
suing similarity graphs [20] . Although we are also dealing with mul-
tiple similarity functions, the goal is to reconcile one with respect to
the other.

In this sense, the most relevant research in data mining commu-
nity is that which looks into learning the relationship between differ-
ent data descriptor sets. The reconciliation idea is similar, in principle,
to redescription mining which looks at binary feature spaces and uses
automated algorithms for reconciling those spaces. [25, 23]. While re-
descriptions mostly deal with binary data, we handle both binary data
and time-varying data in our technique.

Our work is also inspired by the consensus clustering concept,
which attempts to find the consensus among multiple clustering al-
gorithms [21] in the context of gene expression data. Consensus
clustering has also been applied in other applications in biology and
chemistry [8, 6]. In our case, while we are interested in the consen-
sus between similarity of model structure and model output, we also
aim at quantifying and communicating the contribution of the differ-
ent parameters towards that consensus or the lack thereof. We adopt
a human-in-the-loop approach, which is especially crucial when do-
main scientists are involved. The automated methods do not provide
adequate transparency to the clustering parameters, and also in most
cases, iteration is necessary to accurately quantify the reconciliation
results. Our visual reconciliation technique allows domain experts to

supervise the iterative process of tuning parameters and visualizing the
dependency between the similarity spaces.

3.2 User Feedback for Adaptive Distance Functions
Recently, there has been a lot of interest in the visual analytics com-
munity for investigating how computation and tuning of distance func-
tions can be steered by user interaction and feedback. Recently Gle-
icher proposed a system called Explainers that attempts to alleviate
the problem of multidimensional projection, where the axes have no
semantics, by providing named axes based on experts’ input [9]. Eli
et al. present a system that allows an expert to interact directly with a
visual representation of the data to define an appropriate distance func-
tion, without having to modify different parameters ([4]). In our case.
the parameter space is of high interest to the user; therefore we cre-
ate a visual representation of the parameters, that is the weights of the
criteria on the model structure side, and allow direct user interaction
with them. Our user feedback mechanism based weighted optimiza-
tion method is inspired by the work on manipulating distance functions
by Hu et al.( [12]). However, the interactivity and conceptual imple-
mentation is different, since we are working with two different data
spaces, without using multidimensional projections. The modification
of distance functions have also been used for spatial clustering, where
user selected groups are given as input to the algorithm [22]. Our rec-
onciliation method is similar, in principle to this approach, where the
system suggests grouping in one data space, based on the same in other
space, by a combination of user selection and computation.

3.3 Visual Analytics for Climate Modeling
Similarity analysis of model simulations is an emerging problem in
climate science. This is especially relevant for understanding global
climate change patterns. While there has been some work for develop-
ing visualization solutions for climate data [17], most of these focus on
addressing the problem at the level of a single model and understand-
ing its spatio-temporal characteristics. For example, Steed et al. in-
troduced EDEN [29], a tool based on visualizing correlations in an
interactive parallel coordinates plot, focused on multivariate analysis.
Recently, UVCDAT [32] has been developed which is a provenance-
enabled framework for climate data analysis. However, like most other
tools, UV-CDAT does not support multi-model analysis. In our case,
we are not only comparing multiple models, but also comparing two
different data spaces: model structure and model output. Climate sci-
entists have found that different combinations of model structure crite-
ria can potentially throw light into different simulation output behav-
ior [14]. However, to the best of our knowledge, no visual analytics
solution currently exists in climate science to address this problem.
For developing a solution, formulating an analysis paradigm precedes
tool development because of the complexities involved in handling
multiple descriptor spaces. Although there has been some work on
hypothesis generation [15] and task characterization [27] for climate
science, they are not sufficient for reconciling the alternative similarity
spaces. In this sense we advance the state-of-the-art in problem char-
acterization in the climate science domain by introducing the visual
reconciliation paradigm.

4 COORDINATED MULTIPLE VIEWS

An important component of the visual reconciliation technique is the
interaction between multiple views [26]. In this case we have binary
model structure data and time-varying model output data. As we had
shown in Figure 2, the goal is to let domain scientists create and vi-
sualize groups on both sides, and understand the importance of the
different criteria in creating those groups. In this section we provide
an overview of the different views and describe the basic interactions
between those.
Matrix View: To display the model structure data, which is a two-
dimensional matrix of 0’s and 1’s, we use a color-coded matrix Fig-
ure 3, which serves as a presence/absence representation of the dif-
ferent criteria for the model structure. This is inspired from Bertin’s
reorderable matrix [1] and the subsequent interactive versions of the
matrix [28].
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Fig. 3: Matrix view for model structure data: Rows represent mod-
els and columns represent criteria. The variation of average implemen-
tation of a criterion for all models is shown by a color gradient from
light yellow to red, with red signifying higher implementation. In the
default view, all criteria have equal importance or weights, indicated
by the heights of the bars. Connectors help visually link the columns
and bars when they are reordered independently.

Purple color is used for denoting presence and gray for absence.
Visual salience of a heat map depends on the order of the rows and
columns and numerous techniques have been developed till data fore
reordering [5, 33] and seriation [18]. In this case, the main motivation
is to let the scientists visually separate the criteria which have high
average the non-implementation (indicated by 0) and those with high
average implementation. So, for providing visual cues on potential
groups within the data, we reorder the rows and columns, based on a
function that puts the criteria that are present to the upper left of the
matrix and pushes those are absent, to the bottom right.

The colored bars on top of the matrix serve a dual purpose. The
heights of the bars indicate the importance or weight of each crite-
ria for creating groups in model structure. The colors of the bars,
with a light yellow to red gradient indicate the average implementa-
tion of a criterion. For example, as indicated in Figure 3, the yellow
bar indicates that only three models have implemented that criterion.
This gives a quick overview of which criteria are most implemented,
and which ones, the least. The grey lines connecting the bars and
the columns are essential for connecting the link when columns are
reordered. The criteria bars and the columns in the matrix can be re-
ordered independently.

Groups can be created by selecting the different criteria. For a sin-
gle criteria, there can be two groups of models: those which do not
implement the criteria and have a value 0, and those which implement
criteria, and have a value 1. With multiple selections, there can be 2c

combinations, with c being a criteria. In most cases practically, only a
subset of those combinations exist. These are highlighted in the matrix
view.

Time Series View: We display the model output data, which com-
prises of a time series for each model, we use a line chart comprising
of multiple time series (Figure 4,a). But effective visual comparison
of similarity among multiple groups is difficult using this view be-
cause of two reasons. First, due to similar trajectory of the series,
there is a a lot of overlap, leading to clutter. Second, we are unable
to show the degree of clustering using this approach. To resolve these
design problems, we use small multiples. Small multiples [31] have
been used extensively in visualization, one problem with them is when
there are a large number of them, it becomes difficult to group them
visually without any additional cues. To prevent this, we create a small
multiple for each group. When there are time series for different re-
gion, a small multiple can also be created for each region to compare
groupings across different regions.

Interaction: An overview of the steps in the interactive workflows be-

tween the matrix view and the time series view are shown in Figure 2.
These actions and operations are described below:
Create Groups: While reconciling model structure with model output,
scientists can first observe similarity among the models based on their
criteria, and accordingly create groups. This is part of the reconcili-
ation workflow described in Section 5.1. In the matrix view, groups
can be created on interaction. In the time-series view, groups are ei-
ther suggested by the system or selected by the user through direct
manipulation. This is part of the reconciliation workflow described in
Section 5.2.
Reflect: Creation of groups triggers reflection of the groups in both
views. On the matrix side, this is through grouping of the rows. On
the time series side, this is done by color coding the lines.
Split: In the time series view, groups can be reflected by clustering the
models into small multiples.
Optimize: While reconciling model output with structure, to handle
the variable importance of the criteria, an optimization step is neces-
sary. This workflow starts with the scientist selecting groups in the
output, which get reflected in the matrix view. Next they can choose
to optimize the importance or the weights, which leads to subsequent
iteration. This reconciliation workflow is described in detail in Sec-
tion 5.2.

5 RECONCILIATION WORKFLOWS

In this section we describe how we instantiate the conceptual model of
visual reconciliation described in Figure 2 by incorporating the coor-
dinated multiple views, user interaction and an under lying computa-
tional model. The following workflows provide a step-by-step analysis
of how the views and interactions can be leveraged by climate scien-
tists for getting insight into structure similarity and output similarity.

5.1 Reconcile Structure Similarity with Output Similarity
In Figure 4 we show the different steps in the workflow when the
starting point of analysis is the model structure. This workflow relies
on visual inspection of structure similarity by using matrix manipula-
tion, and observing the corresponding patterns in output by creation of
small multiples. The steps are described as follows:
Create groups: For reconciling model structure with output, it is nec-
essary to first provide visual cues about which models are more similar
with respect to the different criteria. For this the default layout of the
matrix is sorted from left to right, by high to low average implemen-
tation of the different criteria. This is indicated in Figure 4b by the
transition of the importance bars from red to yellow. This gives the
scientists an idea of which criteria create more evenly sized groups
with 0’s and 1’s. The criteria which are colored dark red and light
yellow will create groups which are skewed: either too many mod-
els implement the criteria or they do not. Selecting criteria from the
criteria which are deep yellow and orange, gives more balanced clus-
ters, with around 50 per cent implementation. The highlighted column
indicates the criterion with the highest percentage of implementation.

The selected columns are indicated in Figure 4c. These two criteria
creates four groups. For showing groups of models within the matrix,
we introduce vertical gaps between groups, and then draw colored bor-
ders around each group. Reordering by columns is also allowed for
each group independently as shown in Figure 4c . In that case, the
weighted ordering of the bars is kept fixed. For visually indicating the
change in ordering we link the criteria by lines. Lines that are parallel
indicate that those criteria have not moved due to reordering and share
the same position for different groups. Since too many crossing lines
can cause clutter, we render the lines with varying opacity. For indi-
cating movement of criteria, we render those lines with higher opacity.
To highlight where a certain criteria is within a group, on selection we
highlight the line by coloring it red as shown in the figure.

If columns in each group is reordered independently, that shows
the average implementation patterns for each group clearly. But it
becomes difficult to compare the implementations of a set of criteria
across the different groups. To enable this comparison, user can se-
lect a specific group which will be reordered column-wise, and the
columns in other groups will be sorted by that order. This is shown
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Fig. 4: Workflow for reconciling model structure with model output: This linear workflow relies on matrix manipulation techniques and
visual inspection of grouping patterns in the matrix view and the small multiple view.

in Figure 4d, where the first group from the top is reordered based on
the columns, and other groups are aligned relative to that group. As
observed, this enables more efficient comparison relative all the imple-
mented and non-implemented criteria in the first group. For example,
we can easily find that the rightmost criteria is not implemented by the
first group of models, but is implemented by all other groups.
Reflect: The creation of groups in the structure is reflected in the out-
put by the color of the groups. Users can see the names of the models
on interaction.
Split: Small multiples can be created for each group (Figure 4d). The
range of variability of models in each small multiple group reflects
how similar or different they are. This is comparison is difficult to
achieve in a time series overloaded with too many lines. This also en-
ables a direct reconciliation of the quality of grouping in model struc-
ture with that of the output. For example, as shown in the figure, only
the orange group has low variability across models, denoting that the
groups based on the criteria in model structure do not create groups
where models produce similar output behavior.

5.2 Reconcile Output Similarity with Structure Similarity
To reconcile output with structure and complete the loop, we need to
account for the fact that different criteria can have different weights or
importance in the creation of groups. One of the goals of the reconcil-
iation models is to enable scientists explore different combinations of
these criteria that can create groups that are similar to the correspond-
ing model output. However, naive visual inspection is inefficient to
analyze all possible combinations without any guidance from the sys-
tem. For this, we developed a weighted optimization algorithm that
complements the human interaction. We describe the algorithm, pro-
vide an outline of its validation, and the corresponding workflow, as
follows.

5.2.1 Weighted Optimization
Using the model structure data and the model output data, we can cre-
ate two distance matrices. The eventual goal is to learn a similarity
function from the output distance matrix and modify the weights of
the criteria in the structure distance function for adapting to the output
similarity matrix. We describe the problem formulation below.

Let M̂ be a matrix representing the model output with size n× p and
M̃ represents the model structure with size n×q. Similarity in model
output is computed by the function d̂ : Rp×Rp → R. This function
can be any specialized distance function such as Euclidean, Cosine,
etc. For the model structure we use weighted euclidean distance d̃w :

Rq×Rq→ R = ∑
q
k=1

√
wk(yk

i − yk
j)

2, where wk is a weight assigned

to each dimension on M̃.
Using d̂ we encode the similarity information of the model output

in a distance matrix D̂. Our goal would be to find the weights’ vector
w = {w1, ...,wq} which could create a distance matrix for the model
structure D̃ containing approximately the same similarity information
as the model output. This problem can be formulated as the minimiza-
tion of the square error of the two distance functions:

minimize
w

n

∑
i=1

n

∑
j=1
‖d̃w(xi,x j)

2− d̂(yi,y j)
2‖2

subject to wk ≥ 0, k = 1, . . . ,q.

(1)

where ‖.‖ is the L2 norm.
Using this vector w we can define which criteria are important in

the model structure to recreate the same similarity information from
the model output. Note that in the previous formulation we have not
taken into account the the user’s feedback. The weights computation
step is similar to the one used in weighted metric multidimensional
scaling [11] technique.

If we want to incorporate user’s feedback into our formulation we
can multiply the square errors in Eq. 1 by a coefficient ri, j. This num-
ber represents the importance of each pair of elements in the mini-
mization problem. In our approach we allow the user to define groups
on the model output, then ri, j will be almost zero or zero for all the
elements i, j in a group. Now, we need to minimize:

minimize
w

n

∑
i=1

n

∑
j=1

ri, j‖d̃w(xi,x j)
2− d̂(yi,y j)

2‖2

subject to wk ≥ 0, k = 1, . . . ,q.

(2)

Both equations above can be converted into quadratic problems
and solved using any quadratic programming solvers, such as JOp-
timizer [30] for Java or quadprog in MATLAB.

Our approach of incorporating user feedback for computation of
the weights is similar to the cognitive feedback model, namely V2PI-
MDS [13]. Mathematically the approaches are similar but conceptu-
ally they are different on two counts. First, in their case the projected
data space is another representation of the high-dimensional data space
and they attempt to reconcile the two. In our case however, the un-
derlying data spaces are entirely different. We handle this problem
by using interactive visualization as a means to preserve the mental
model of the scientists about the characteristics of the data. We could
also have used multidimensional projections. But as found in previous
work, domain scientists tend not to trust the information loss caused
by the dimensionality reduction and prefer transparent visualizations,
where the raw data is represented.[7].

Second, the user interaction mechanism for providing feedback to
the computation model is also different than the V2PI-MDS model.
We allow users to define groups within the data, as opposed to direct
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Fig. 5: Synthetic data for validating weighted optimization. Using
the model output data in (a) and model structure data in (b), we validate
the accuracy of the optimization algorithm.

manipulation and movement of data points in a projection; which is
not applicable in our case. Our focus is on the relationship between the
weights of the dimensions and the similarity they induce. As a result,
we let users explore different groupings by using the sorted weights
and modifying the views accordingly. This results in a rich interactive
analysis for reconciling the two similarity spaces.

5.2.2 Validation

To validate our optimization, we use two synthetic datasets, one for
model output and the other one for model structure. The purpose of
this validation to demonstrate the accuracy of the algorithm in the best
case scenario, i.e., when a perfect grouping based on some criteria
exists in the data. In most real-world cases, however the optimization
will only create an approximation of the input groups.

Our model output is a two-dimensional dataset and we use scatter
plot to visualize it (Figure 6). We can notice that we have three well de-
fined groups {m1,m1,m3,m4}, {m5,m6,m7,m8} and {m9,m10}. Fig-
ure 5(b) shows our synthetic model structure data which contains
boolean values. Each row represents a different model (mi) and each
column a different criteria. The first two criteria were chosen specifi-
cally to split the dataset into the same three groups as the model out-
put. For instance when criteria1 = 0 and criteria2 = 0 we can create
the group {m1,m1,m3,m4}.The next three columns are random values
(zero or one).

First, we solve the Eq. 1 using our synthetic dataset and
Euclidean distance for the model output; and we get w =
{1.00,0.14,0.06,0.08,0.10}. For visualizations purpose we use the
classical multidimensional scaling algorithm to project the model
structure data using the Weighted Euclidean distance. We normal-
ized the weights between zero and one for visualization purpose, but
the weighted Euclidean distance uses the unnormalized weights. Fig-
ure 6(a) shows the two dimensional data. Our vector w was able
to capture some similarity information from the model output. For
example, {m1,m1,m3,m4} is a well defined group. Even though
{m5,m6,m7,m8} and {m9,m10} are not mixed, they are not well de-
fined groups.

Next, we incorporate user feedback and set the coefficient ri, j
to zero for all pair combinations in the groups {m1,m1,m3,m4},
{m5,m6,m7,m8} and {m9,m10}. Solving Eq. 2 we get the vector w =
{1.00,0.77,0.07,0.08,0.10}. Figure 6(b) shows the two-dimensional
projection of the model structure using the weighted Euclidean dis-
tance and w. We notice that now the three groups are well defined.
Our algorithm gave the highest weights to the first two criteria (cri-
teria1= 1.0 and criteria2= 0.7) which we knew a priori have the best
combination to split the model structure in the same groups as the
model output.

These two experiments show that our formulation accurately gives
the highest weights to the most relevant criteria for splitting models
into groups, and this will be used to guide the user during the explo-
ration process. In Section 6 we will show how this approach works
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(a) Automatic optimization
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(b) Optimization based on user feed-
back

Fig. 6: Validation of user feedback based optimization. As we can
observe in (b), optimization based on user’s feedback gives highest
weights to the two criteria which are splitting the models into three
groups.

with real data; where in most cases, an approximation of the output
group is produced by the algorithm.

5.2.3 Workflow
In Figure 7 we show how the complete loop starting from output to
structure, and back, is executed by user interaction and the optimiza-
tion algorithm described above. This workflow relies on human in-
spection of structure similarity through manipulation of the matrix
view and observation of the corresponding output in the small mul-
tiples of time series. The steps are described as follows:
Create groups in output: For suggesting groups of similar outputs,
the system uses clustering of time series by Euclidean distance or cor-
relation (Figure 7a). While other metrics are available for clustering
time series, for this case scientists were only interested in these two.
Accordingly, the clusters are updated in the output view.
Reflect in structure: These clusters are reflected in the model struc-
ture side by reordering the matrix based on the groups (Figure 7b).
All the criteria are given equal weights by default, as indicated by the
uniform height of the bars. The two views are linked by the color of
the groups. Users can also select groups by direct manipulation in the
output view.
Optimize weights: Next on observing the system-defined clusters,
one can choose to optimize the weights for the criteria on the struc-
ture side. As shown in Figure 7c, the columns are reordered from left
to right based on weights. These weights serve as hints to the user
for creating groups on the structure side. The groups are not immedi-
ately created to prevent change blindness. The system needs the user
to intervene to select the criteria, based on which the groups can be
created.

The underlying optimization algorithm as described earlier creates
an approximate grouping based on the input. In many cases, as shown
in the figure, the highest weight may not give a perfect grouping. By
perfect grouping we mean, the optimization algorithm is able to create
the exact same groups as the input from the output side. In most cases,
the weights for an exact solution might not even exist. By using the
optimization, all we get is a group of structure clusters which are as
closely aligned with the output as possible.
Create groups in structure: Based on the suggested weights, a user
can select the two highest weights and create groups, as shown in Fig-
ure 7d. There are four possible combinations of these two criteria (with
0’s and 1’s) and all of them are shown in their own group. In many
cases all possible combinations might not exist.
Reflect/Split in output:The creation of the groups are also reflected
on the output side by indicating the group membership of each model
by color-coding or by creation of small multiples (Figure 7e), the out-
put groups created are not perfect, as they do not exactly match with
the output groups in the previous step. From this however, the sci-
entists can judge the effect of the two criteria on model output. For
example, if for the selected criteria, the presence or absence does not
have an impact on the output, that will be reflected in the time series,
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Fig. 7: Workflow for reconciling output with structure through feedback: This iterative workflow relies on weighted optimization, based
on Equations 1 and 2, and human initiated parameter tuning and selection for reconciling model output with model structure.

by their spread or lack of any significant correlation. For inspecting if
combining other criteria can give a more perfect grouping on the struc-
ture side, that matches with the output, scientists need to continue the
iteration and repeat the previous steps.

6 CASE STUDY

We collaborated with 2 climate scientists from the Oak Ridge National
Lab and one other climate scientist from the United States Forest Ser-
vice, as part of the Multi-Scale Synthesis and Terrestrial Model Inter-
comparison Project (MsTMIP). Each of them have at least ten years
of experience in climate modeling and model inter-comparison. MsT-
MIP is a formal multi-scale synthesis, with prescribed environmental
and meteorological drivers shared among model teams, and simula-
tions standardized to facilitate comparison with other model results
and observations through an integrated evaluation framework [14].
One key goal of MsTMIP is to understand the sources and sinks of the
greenhouse gas carbon dioxide, the evolution of those fluxes with time,
and their interaction with climate change. To accomplish these goals,
inter-annual and seasonal variability of models need to be examined
using multiple time-series. Early results from MsTMIP have shown
that variation in model outputs could be traced to the same in model
structure. Using visual reconciliation, climate scientists wanted to fur-
ther understand whether similarity or differences in model structure
play a role in the inter-annual variability of Gross Primary Productiv-
ity (GPP) for different regions. Inclusion of particular combinations
of simulated processes may exaggerate GPP or its timing more than
any component in isolation. Inclusion of a patently incorrect model
structure could dramatically sour model output by itself

We describe two cases where our collaborators could find relation-
ships between model structure and model output using our visual rec-
onciliation technique. The model structure data is segmented into dif-
ferent classes like energy, carbon, vegetation, etc. In this case the
scientists wanted to understand the relationship between criteria be-
longing to energy and vegetation, and their GPP variability in Polar
and North American Temperate regions. Each of the model
structure datasets consist of about 15 models and about 20 to 30 crite-
ria.

6.1 Reconciling seasonal cycle similarity with structural
similarity

The seasonal cycle of a climate model is given by the trajectory of the
time series and the peaks and crests for the different months in a year.
Exploring the impact of seasonal cycles for different models with re-
spect to GPP is an important goal in climate science, since the amount
and timing of energy fixation provides a baseline for almost all other
ecosystem functions, and models must accurately capture this behav-
ior for all regions and conditions before other, more subtle ecosystem
processes can be accurately modeled. The motivation for this sce-
nario was to find if there is any dependency between regional seasonal
cycles of models and included model structures with respect to this
overarching energy criterion.

The scientists started their analysis in the Polar region by se-
lecting the BIOME and VEGAS models which appeared to be simi-
lar with respect to both their GPP values and the timing of their sea-
sonal cycles, as shown in Figure 8a. Their intent was to observe
which energy parameter causes BIOME and VEGAS to behave simi-
larly in one group, and the rest in another. They optimized the ma-
trix view to find the most important criterion, which was found to
be Stomatal conductance. After this step they chose to se-
lect this criteria to split the models into two groups, shown in Fig-
ure 8b and reflected in Figure 8c. The underlying optimization algo-
rithm thus gave a perfect grouping, with the models that implement
Stomatal conductance in the orange group, while the rest are in an-
other group. The climate scientists were already able to infer that
Stomatal conductance has strong impact on the seasonal cy-
cles of BIOME and VEGAS.

Next the scientists selected the SiB3 and SiBCASA models in the
North American Temperate (NAT) region, which appear to be simi-
lar with respect to their seasonal cycle and GPP output (Figure 8d).
This grouping is already intuitive and inspires confidence, because of
its consistency with the known genealogical relationship of these two
models as siblings. With the same goal as the previous case, they
optimized the matrix view, and found that Prognostic change
was the most important structural criterion to approximately create
the two groups. This structural criterion provided a near-perfect seg-
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Fig. 8: Reconciling seasonal cycle with model structure using the workflow described in Section 5.1. (a) Initial user selection in Polar region
output. (b) Weighted optimization, (c) Corresponding output; (d) Initial user selection in North American Temperate region, (e) Creating groups
based on the first three criteria after optimization. (f) Small multiple groups of models.

mentation, except for the CLASS-CTEM model, which also imple-
ments this parameter, as shown in Figure 8e. In an attempt to get
the exact segmentation, they selected the next two most important cri-
teria, which are prescribed leaf index and RTS2-stream.
SiB3 and SiBCASA implement both of these criteria and are in one
output group, while the other green output group is split into three
sub-groups based on their implementation of these three criteria. The
implementation of these three criteria thus has a significant effect on
the grouping of these two models with respect to their GPP. The sci-
entists could continue in this way to find more inferences from the
implementation or non-implementation of these three structural crite-
ria, by further observing their output in small multiples, as shown in
Figure 8f. This shows that the blue group, none of which implement
Prognostic change, but all of which implemented the other two,
show a greater spread of GPP output values than any other group. In
this way, the scientists could reconcile the impact of different energy
criteria on the seasonal cycle and regional variability of GPP.

6.2 Iterative exploration of structure-output dependency
In this case, the scientists started by looking at the model structure
data for discovering structure criteria that could explain model groups
having high and low GPP values across both Polar and NAT regions.
A simple sequential search for criteria is inefficient for reconciliation.
To start their analysis, as shown in Figure 9a, the matrix view is first
sorted from left to right by the columns having high numbers of im-
plementations. The sorting enabled the scientists to group using a cri-
terion that would cause balanced clusters, i.e., divide the models into
equal groups. In this view, these criteria would lie in the center, having
orange or deep yellow color. In course of this exploration, they found
that the canopy/stomatal conductance whole canopy
structural criterion splits the group into nearly equal halves. These
clusters are represented in the output by green, i.e., not implement-
ing that criterion, and orange, i.e., implementing that criterion. Fur-
ther, looking at the output, as shown in Figure 9b, scientists found
that the orange group has higher GPP values and the green group
has lower values. In other words, the models that have implemented
stomatal conductance have higher GPP values than the ones
that have not implemented this criterion. This grouping is consistent

for the North American Temperate region, with the exception of the
CLASS-CTEM model, as shown in Figure 9c.

Next, the scientists wanted to verify whether by performing op-
timization, they can get the same criterion to be the most impor-
tant for the behavior of GPP within the Polar region, which rep-
resents a different, extreme combination of ecological conditions.
They selected the green group, as shown in Figure 9d, and then
chose to optimize the matrix view. They found the same crite-
rion (canopy/stomatal conductance whole canopy) to
have the highest weight, reinforcing the reconciling power of this same
group of model structures for explaining differences in GPP across two
extreme eco-regions. Thus, the same criterion that they discovered in-
teractively could be verified algorithmically. Note that, as shown in
Figure 9d, only one of the models is classified in a different group
than the user-selected group.

For the NAT region, the scientists wanted to drill-down to determine
what was causing Class-CTEM to behave differently, as was found
during the initial exploration. They defined two groups, with one
of them only having Class-CTEM as shown in Figure 9,g. Once
they chose to optimize the matrix, they found that no single criterion
could produce the same output groups. However, by combining
the two most important criteria, that is vegetation heat
and canopy-stomatal sunlit shaded (Figure 9,h),
Class-CTEM was put in a separate group by itself. It was the only
model that implemented both of these criteria. Additionally, the
scientists also saw that the models in the green group, which did
not implement any of these structures, had a larger range of GPP
variability than the other model groups (Figure 9,i). They concluded
that,by allowing both more- and less-productive sunlit
and shaded canopy leaves, respectively, models which imple-
ment these differential processes seem to stabilize the production of
GPP, even across extremely different eco-regions, possibly accurately
reflecting the actual effect of these processes in nature.

7 CONCLUSION AND FUTURE WORK

We have presented a novel visual reconciliation technique, using
which climate scientists can understand the dependency relationships
between model structure similarity and model output similarity.
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Fig. 9: Iterative exploration of structure-output dependency using a combination of the two workflows for reconciliation. (a) Initial user
creation of groups, (b,c) Corresponding groups in regions, (d,e,f) Workflow for verifying user-defined groups, (g,h,i) Workflow for finding the
criteria that can potentially cause CLASS-CTEM to be an outlier, and then looking at range of variability in small multiple outputs.

Impact: By exploiting visual linking and user-steered optimization,
we are able to communicate to the scientists, the effects of different
groups of criteria on the variability of model output. Using this tech-
nique, scientists could form and explore hypotheses about reconcil-
ing the two different similarity spaces, which was not possible before.
One of the climate scientists observed that: “One of the most valuable
functions of the technique is to effectively remove from considera-
tion the complications created from model structures, that have little
to no effect on outputs, and to effortlessly show and rank the differen-
tial effects on output created by seemingly related or unrelated model
structures.”
Challenges: There are several open issues to consider for improving
the technique. Currently we are handling only two descriptor sets.
More diverse descriptor data will cause visual complexity and it poses
a significant challenge for effective visualization design and interac-
tion. Although we are using about 15 models and not more than 30
criteria, we do not foresee a scalability problem, as matrix visualiza-
tions do not require much screen real estate. Some of the interac-
tions like showing groups, however, have to be adapted accordingly,
for example, by using focus-and-context techniques for zooming on
one group and rendering other ones as context with lower resolution.
Generalization: As observed before, the visual reconciliation tech-

nique is not restricted to the climate science domain. As a next step,
we will apply this technique in the healthcare domain, where the goal
is to reconcile patient similarity with drug similarity for personalized
medicine development [34]. Another potential application is in the
product design domain. For example in the automotive market, car
models can be qualified by multitude of features. It will be of interest
to automotive companies to reconcile similarity of car models based
on their descriptors, with the similarity based on transaction data. In
short, we posit that visual reconciliation can potentially serve as an
important analytics paradigm for making sense of the ever-growing
variety of available data and their diverse similarity criteria.
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[17] F. Ladstädter, A. K. Steiner, B. C. Lackner, B. Pirscher, G. Kirchengast,
J. Kehrer, H. Hauser, P. Muigg, and H. Doleisch. Exploration of cli-
mate data using interactive visualization*. Journal of Atmospheric and
Oceanic Technology, 27(4):667–679, 2010.

[18] I. Liiv. Seriation and matrix reordering methods: An historical overview.

Statistical analysis and data mining, 3(2):70–91, 2010.
[19] D. Masson and R. Knutti. Climate model genealogy. Geophysical Re-

search Letters, 38(8), 2011.
[20] S. Mimaroglu and E. Erdil. Combining multiple clusterings using simi-

larity graph. Pattern Recognition, 44(3):694–703, 2011.
[21] S. Monti, P. Tamayo, J. Mesirov, and T. Golub. Consensus clustering:

a resampling-based method for class discovery and visualization of gene
expression microarray data. Machine learning, 52(1-2):91–118, 2003.

[22] E. Packer, P. Bak, M. Nikkila, V. Polishchuk, and H. J. Ship. Visual
analytics for spatial clustering: Using a heuristic approach for guided ex-
ploration. IEEE Transactions on Visualization and Computer Graphics,
19(12):2179–2188, 2013.

[23] L. Parida and N. Ramakrishnan. Redescription mining: Structure theory
and algorithms. In AAAI, volume 5, pages 837–844, 2005.

[24] D. Pfitzner, R. Leibbrandt, and D. Powers. Characterization and eval-
uation of similarity measures for pairs of clusterings. Knowledge and
Information Systems, 19(3):361–394, 2009.

[25] N. Ramakrishnan, D. Kumar, B. Mishra, M. Potts, and R. F. Helm.
Turning cartwheels: an alternating algorithm for mining redescriptions.
In Proceedings of the tenth ACM SIGKDD international conference on
Knowledge discovery and data mining, pages 266–275. ACM, 2004.

[26] J. C. Roberts. State of the art: Coordinated & multiple views in
exploratory visualization. In Coordinated and Multiple Views in Ex-
ploratory Visualization, pages 61–71. IEEE, 2007.

[27] H.-J. Schulz, T. Nocke, M. Heitzler, and H. Schumann. A design space
of visualization tasks. IEEE Transactions on Visualization and Computer
Graphics, 19(12):2366–2375, 2013.

[28] H. Siirtola. Interaction with the reorderable matrix. In In Proc., Conf. on
Information Visualization, pages 272–277. IEEE, 1999.

[29] C. A. Steed, G. Shipman, P. Thornton, D. Ricciuto, D. Erickson, and
M. Branstetter. Practical application of parallel coordinates for climate
model analysis. Procedia Computer Science, 9(0):877 – 886, 2012.
Proceedings of the International Conference on Computational Science,
{ICCS} 2012.

[30] A. Tivellato. JOptimizer. http://www.joptimizer.com/.
[31] E. R. Tufte and P. Graves-Morris. The visual display of quantitative in-

formation, volume 31. Graphics press, 1983.
[32] D. N. Williams, T. Bremer, C. Doutriaux, J. Patchett, S. Williams,

G. Shipman, R. Miller, D. R. Pugmire, B. Smith, C. Steed, E. W. Bethel,
H. Childs, H. Krishnan, P. Prabhat, M. Wehner, C. T. Silva, E. Santos,
D. Koop, T. Ellqvist, J. Poco, B. Geveci, A. Chaudhary, A. Bauer, A. Plet-
zer, D. Kindig, G. L. Potter, and T. P. Maxwell. Ultrascale visualization
of climate data. Computer, 46(9):68–76, 2013.

[33] H.-M. Wu, Y.-J. Tien, and C.-h. Chen. Gap: A graphical environment
for matrix visualization and cluster analysis. Computational Statistics &
Data Analysis, 54(3):767–778, 2010.

[34] P. Zhang, F. Wang, J. Hu, and R. Sorrentino. Towards personalized
medicine: Leveraging patient similarity and drug similarity analytics. tar-
get, 1(1):1.

10

http://www.joptimizer.com/

	Introduction
	Motivation
	Problem Characterization
	Visual reconciliation goals

	Related Work
	Clustering Methods
	User Feedback for Adaptive Distance Functions
	Visual Analytics for Climate Modeling

	Coordinated Multiple Views
	Reconciliation Workflows
	Reconcile Structure Similarity with Output Similarity
	Reconcile Output Similarity with Structure Similarity
	Weighted Optimization
	Validation
	Workflow


	Case Study
	Reconciling seasonal cycle similarity with structural similarity
	Iterative exploration of structure-output dependency

	Conclusion and Future Work

