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Lacunarity analysis is a multiscaled method for describing patterns of spatial dispersion. It can be used with
both binary and quantitative data in one, two, and three dimensions. Although originally developed for fractal
objects, the method is more general and can be readily used to describe nonfractal and multifractal patterns.
Lacunarity analysis is broadly applicable to many data sets used in the natural sciences; we illustrate its
application to both geological and ecological data.@S1063-651X~96!01505-X#

PACS number~s!: 07.05.Kf, 89.60.1x, 91.65.2n, 92.40.Fb

I. INTRODUCTION

An important goal in the natural sciences, such as geol-
ogy, ecology, and epidemiology, is the quantification of spa-
tial patterns. However, these patterns are often complex, ex-
hibit scale-dependent changes in structure, and are
correspondingly difficult to identify and describe. As a re-
sult, the advent of fractal mathematics has been greeted en-
thusiastically by many natural scientists and fractal tech-
niques have been increasingly applied~Barton and La Pointe
@1#!. To date, however, this application has been generally
restricted to the calculation of the fractal dimension and re-
lated parameters. Newer methods, such as multifractals, are
only beginning to be used~Milne @2#, Lam and De Cola@3#!.

In this paper we will show how the concept of lacunarity,
which was originally developed to describe a property of
fractals~Mandelbrot@4#; Lin and Yang@5#; Gefen, Meir, and
Aharony@6#; Allain and Cloitre@7#!, can be extended to the
description of spatial distribution of real data sets, including,
but not restricted to, those with fractal and multifractal dis-
tributions.

The approach we use is an elaboration of the lacunarity
algorithm developed by Allain and Cloitre@7#, which was
introduced to ecologists in a previous paper@8#. In this paper
the algorithm is used as the basis of a more general approach
to the study of spatial distributions. We review the algorithm
and show how it can be used to describe both binary and
count ~quantitative! data and can be applied to data of any
dimensionality. The method is applied to a number of model
data sets, including multifractals, and we demonstrate how it
can be used to uncover scale-dependent changes of spatial
structure. We then document the application of the method to
empirical data sets from ecology and geology.

II. THE GLIDING BOX ALGORITHM AND LACUNARITY
ANALYSIS

A. The gliding box algorithm: Applications to binary sets

As defined by Gefen, Meir, and Aharony@6#, lacunarity is
the deviation of a fractal from translational invariance.
Translational invariance can, of course, also be a property of
nonfractal sets@7#. In addition, translational invariance is
highly scale dependent; sets which are heterogeneous at
small scales can be quite homogeneous when examined at
larger scales or vice versa. Lacunarity can thus be considered
a scale-dependent measure of heterogeneity or texture of an
object, whether or not it is fractal@7#.

A number of algorithms have been proposed for measur-
ing this property@5,6#; we have adopted the intuitively clear
and computationally simple ‘‘gliding box’’ method of Allain
and Cloitre@7#. Simple examples demonstrate the use of this
algorithm for binary data. Illustrated in Fig. 1 are five one-
dimensional sets which differ in translational invariance;
they could, for example, represent such empirical data as the
occurrence of a tree species along a transect. All sets have
the same length~M5256! and the same number of occupied
sites~S544!. Set A’s points are all clustered at the extremes
of the line; set B’s approximate a fractal Le´vy dust; set C’s
are randomly placed; and set D’s are regularly distributed. In
set E, the points occur in clumps of four points but these
clumps are randomly distributed. Set E could represent a
case where groups of trees~the clumps! are themselves ran-
domly spaced; i.e., there are two distinct scales to the pat-
tern.

A box of lengthr is placed at the origin of one of the sets
~Fig. 1!. The number of occupied sites within the box~box
mass equal tos! is now determined. The box is moved one
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space along the set and the box mass is again counted. This
process is repeated over the entire set, producing a frequency
distribution of the box massesn(s,r ). This frequency distri-
bution is converted into a probability distributionQ(s,r ) by
dividing by the total number of boxesN(r ) of size r . The
first and second moments of this distribution are now deter-
mined:

Z~1!5SsQ~s,r !, ~1!

Z~2!5Ss2Q~s,r !. ~2!

The lacunarity for this box size is now defined as

L~r !5Z~2!/@Z~1!#2. ~3!

This calculation is repeated over a range of box sizes, rang-
ing from r51 to some fraction ofM ~we usually useM /2!. A
log-log plot of the lacunarity versus the size of the gliding
box is then produced. Lacunarity plots for the sets in Fig. 1
are illustrated in Fig. 2.

The statistical behavior ofL(r ) and the shape of the la-
cunarity curves can best be understood by recalling that

Z~1!5 s̄~r !, ~4!

Z~2!5ss
2~r !1 s̄2~r !, ~5!

FIG. 2. Lacunarity analyses
for the distributions shown in Fig.
1. Lacunarity is dimensionless.
Redrawn from Plotnick@14#.

FIG. 1. Five one-dimensional
sets containing the same number
of points but differing in spatial
distribution. The abscissa units are
arbitrary. The boxes on set C rep-
resent three positions of a gliding
box of length 9. Redrawn from
Plotnick @14#.
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wheres̄(r ) is the mean andss
2(r ) the variance of the number

of sites per box. As a result,

L~r !5ss
2~r !/ s̄2~r !11. ~6!

The lacunarity statistic is thus a dimensionless representation
of the variance to mean ratio and is closely related, therefore,
to a number of statistics, such as Morisita’s index, that have
long been used in ecology@9#.

From this relationship, and by examining the lacunarity
curves in Fig. 2, it can be shown that the lacunarity for bi-
nary data is a function of the following.

(1) The fraction P(5S/M ) of sites that are occupied.As
the mean number of occupied sitesZ~1! goes to zero,L goes
to `. Sparse sets will thus have higher lacunarities than
dense sets, for the same gliding box sizes.

(2) The size r of the gliding box.In general, except for
highly clustered sets~e.g., set A in Fig. 1! larger boxes will
be more translationally invariant than smaller boxes; i.e., the
second moment declines relative to the first. The same set
will thus have lower lacunarities as the size of the boxes
increases. For all sets, since Q(1,1)5P,
Z(2)/[Z(1)]25P/P2, andL~1!51/P. This value is solely a
function of the percentage of occupied sites and is indepen-
dent of the overall size of the set and details of its geometry.
A similar constraint occurs if the box is the size of the entire
set; then the variance component of the second moment is 0
andL(M ) must equal 1. As a result, since all five sets in Fig.
1 have the same values ofP andM , they andx intercepts of
their lacunarity curves are identical.

(3) The geometry of the set.For a givenP and r higher
lacunarity indicates greater clumping. Set A in Fig. 1 is
highly clustered, with a single large gap in the middle. For
all r!M most boxes are either mostly full or totally empty.
As a result, the variance of box masses, and thus the lacunar-
ity, is high over most of the range of box sizes. The slight
initial increase of lacunarity as box size increases is due to
the greater number of partially filled boxes at larger box
sizes. Notice that once the box size reaches that of the
clumps, the curve declines very rapidly.

In contrast, the points in set D are regularly distributed at
a spacing ofM /S. Oncer is greater than this value,s would
be constant at any location of the map, so the variance is
zero. The lacunarity of a totally regular array is thus 1 for
any gliding box size larger than the unit size of the repeating
pattern. In addition, since the spacing of the points isM /S or
1/P, theX andY intercepts are identical and the slope of the
lacunarity curve to this point should equal21. The small
deviations from zero for larger boxes shown in Fig. 2 are due
to the length of the regularly spaced sequence being shorter
than the total sampled length.

Sets B and C are intermediate cases. As expected, the
lacunarity of the Le´vy dust is higher over all box sizes than
that of the random sequence, since the Le´vy dust is hierar-
chically clumped. The lacunarity curve of the self-similar
sequence is nearly linear. As described by Allain and Cloitre
@7#, the lacunarity curve for self-similar monofractals should
be a straight line with a slope equal toD2E, whereD andE
are the fractal and Euclidean dimensions, respectively. The
deviations from linearity in Fig. 2 are due to the short length
of the sequence. Analyses of larger sets are much more linear

@8#. Note also that, as expected, for the regular setD equals
zero ~D-E521! for box sizes smaller than the repeating
pattern~each box contains only a single point!.

The random set, in contrast, forms a concave upward
curve, with a sharp dropoff at small box sizes. This is due to
random patterns being statistically invariant at larger scales.

An examination of the lacunarity curve for set E, the ran-
domly distributed clumps, demonstrates how lacunarity can
be used to detect scales. The curve declines gradually to a
break point at a log box size of about 0.6~box size equal to
4!, corresponding to the size of the clumps. It then declines
more rapidly, with the concave upwards portion of the curve
corresponding to the scales above that of random behavior.

In sum, lacunarity curves of one-dimensional sets have
distinct breaks in slope corresponding to distinct scales
within the sets. Fractal patterns, because they have the same
appearance at all scales, produce straight lacunarity plots.
This result is also true for higher dimensions@7,8#.

B. An empirical example: g-ray peaks from geologic well logs

Well logs ofg-ray emissivity versus depth are a standard
technique for the measurement of the natural levels of radio-
activity in rock formations.g rays are predominantly emitted
by 40K, which is found in high concentration in clay-rich
rocks, such as shales. Rocks with a low percentage of clays,
such as clean sandstones, generally have a low level of ra-
dioactivity. Consequently,g-ray well logs can be used to
determine the vertical distribution of sand and shales in bur-
ied rock formations. Figure 3~a! shows the depth distribution
of g-ray emission peaks~‘‘kicks’’ ! in a portion of a well log
from the Triassic Taylorsville basin of North Carolina. The
rocks represent a long series of river-deposited sediments.
The lacunarity curve for the entire sequence~831 peaks in
3439 feet! is shown in Fig. 3~b!. For comparison, the la-
cunarity curve for the same number of randomly distributed
peaks is also shown. It can readily be seen that theg-ray
peaks are far more clustered, at all scales, than would be
predicted from a random distribution and more closely ap-
proximate a fractal distribution. This result is consistent with
other studies that have shown the fractal structure of strati-
graphic sequences@9,10#.

C. Modifications for analysis of quantitative data

In many real data sets, the finest available resolution is
greater than the grain of the data~i.e., the scale at which the
data would resolve to point presence or absence!. Such data
are quantitative, rather than binary. Lacunarity analysis as
originally applied@6,7# was used only on binary data sets.
Further inspection of the method, however, reveals it is
equally applicable to quantitative data. The box masses are
0’s and 1’s only forr51. For all larger values ofr , however,
box masses can range from 0 tor in the one-dimensional
case or 0 tor 2 in two dimensions~and so on for higher
dimensions!. Consequently, using quantitative data is analo-
gous to beginning the analysis at a coarser level of resolu-
tion. The lacunarity can thus be calculated by using the sum
~or integral! of the distribution in a box of sizer .

In addition, recall that lacunarity is also a measure of the
variance to mean ratio of box mass. In this context, if the
total mass~or measure,sensuMandelbrot @4# ! is spread
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evenly over the entire set, then the variance, and thus the
lacunarity, will be low. If the mass is concentrated at a few
points, however, box mass variance and lacunarity will be
high.

The application of lacunarity analysis to quantitative data
can be illustrated by performing lacunarity analysis on a fa-

miliar multifractal set, that produced by the binomial multi-
plicative process@11#. The binomial multifractal can be used
as a model of sequences where the distribution of material is
produced by processes acting multiplicatively at many
scales. Briefly, a given mass is distributed along a particular
geometric support, such as a line. A fractionp of the mass is

FIG. 4. ~A! Results of an 11
generation binomial multiplicative
process withp50.3. ~B! Same,
p50.1. ~C! Process in which gen-
erations 1–6 havep50.1 and gen-
erations 7–11 havep50.3. Values
on both axes are arbitrary.

FIG. 3. ~A! g-ray peaks in
1000 foot section of a well log.
~B! Lacunarity analysis of the
well log peaks compared to a ran-
dom distribution of the same over-
all density.
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found on half the line, and a fraction 1-p along the other
half. Each half line is also divided in half, with the same
proportions of the material being found on each side. This
procedure produces a self-similar distribution of masses,
with some locations having extremely high values and others
extremely low values. The range is a function ofp. Two
representative sets are shown in Figs. 4~a! and 4~b!, with
p50.3 and 0.1, respectively. Notice that the lower thep
value, the larger the range of masses after the same number
of iterations.

The lacunarity curves for these distributions are shown in
Fig. 5. As is the case for the fractals, the self-similar multi-
fractals produce a linear lacunarity curve. Lacunarity can
thus be used as a method to detect the presence of multifrac-
tal structure in a data set. The line for thep50.1 has a higher
intercept than that forp50.3, reflecting the greater range of
values in the latter sequence. Since thex intercept is fixed,
the slope is also a function ofp. Note that for these sets, the
slope of the curve no longer represents the fractal dimension,
as it does for monofractals.

As with fractals, lacunarity can be used to identify
changes of scale within multifractal distributions. A two-
scale binomial multifractal is shown in Fig. 4~c!. The first six
iterations were performed withp50.1, the next five with
p50.3. The resulting lacunarity curve is shown in Fig. 5.
Notice that the curve is more-or-less parallel to the line for
p50.1, up to a box size of 64, and then parallels the line for
p50.3. The break in slope thus corresponds exactly to the
change in scaling of the original distribution. This immedi-
ately indicates how multifractal models can be compared to
empirical data sets for the detection of scale-dependent
changes in spatial behavior.

It may seem surprising that lacunarity analysis can be
applied to multifractal distributions, since Mandelbrot@4#, in

his original formulation of the multifractal concept, referred
to them as ‘‘nonlacunar fractals.’’ Future work should exam-
ine the relationship of lacunarity to other statistical represen-
tations of multifractals, such asf ~a! curves and the distribu-
tion of mass exponents@11#.

D. Examples: Yellowstone seedlings and sediment transport

The utility of lacunarity analysis as a general tool for
spatial analysis of quantitative data is illustrated by its appli-
cation to two diverse and seemingly unrelated data sets. The
first data set, illustrated in Fig. 6, details the pattern of lodge-
pole pine seedling regrowth four years after the Yellowstone
fires of 1988. The data were collected 23 July 1992 near
Cougar Creek, just inside the Yellowstone National Park
western boundary. The sequence represents the number of
seedlings in consecutive 1 m2 squares along a 3.4 km
transect. Since the seedlings are very small, their distribution
could be represented as binary only at a scale far smaller
than that dictated by the sampling design.

The second data set~Fig. 7! is time series data of bedload
transport rates~mass of sediment passing a particular point
per unit time! in the East Rosebud River, Montana, in July
1988. Bedload transport rate was measured at 1 min intervals
for 10 h @9#.

Both of the empirical distributions are probably produced
by interacting multiplicative processes acting at many scales
~see below!. As a result, comparison sequences were gener-
ated by modifying the binomial multiplicative process~Fig.
8!. Instead of the left~or right! side of the segment always
receiving the same proportion of material at each iteration,
the side receiving the largest fraction was randomly chosen.
As a result, the peaks are generally symmetrical. In addition,

FIG. 5. Lacunarity analyses of
the patterns shown in Fig. 4.
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the exact proportions are allowed to vary normally around
the mean value ofp50.4. The sequence produced is much
closer in appearance to the empirical data sets shown in Figs.
6 and 7 than are the binomial sequences in Fig. 4.

The lacunarity curves for these sequences are shown in
Fig. 9. In order to facilitate comparisons, the curves were
normalized to a commony intercept by dividing through by
the value for box size equal to 1.

Note first that despite the randomization, the random mul-
tifractal sequences produce an essentially linear lacunarity

curve. In contrast, both curves for the empirical data show
distinct breaks in slope. These breaks may represent scale-
related changes in the dominant process controlling the dis-
tribution.

For example, the Yellowstone curve is linear to a box size
of about 25 m, a distance approximately equal to the distri-
bution of seedlings around individual isolated parent trees.
Other changes in slope may reflect variations in the effects of
topography, soil suitability, and fire severity. An important
biological factor may be spatial variation in the distribution

FIG. 7. Time series of weight
of sediment in transport per
minute for 10 h, East Rosebud
River, Montana@9#.

FIG. 6. Number of lodgepole
pine seedlings per m2 in a 3.4 km
transect, Yellowstone National
Park.
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of serotiny, a trait present in some lodgepole pines, in which
fire is required to open the pine cones and thus distribute
seeds. These physical and biological factors all act at specific
scales.

Similarly, the sediment transport curve shows distinct
breaks at about 4 and 30 min. These changes in behavior
may result from nonlinear feedbacks between the heteroge-
neous material on the stream bed, the material in transport,
and local fluctuations in stream hydraulics@12#.

III. DISCUSSION

Although fractal methods are starting to become part of
the standard approach to the analysis of spatial patterns, they
are often inadequate to describe the full range of real pat-
terns. Real patterns may or may not be fractal; when fractal
structure exists, it may be only over a limited range of orders
of magnitude; and patterns with the same fractal dimension
may still look different; i.e., have different ‘‘textures’’@4#.

FIG. 9. Lacunarity analysis of
the patterns in Figs. 6 and 7, com-
pared to similar length random-
ized binomial multiplicative pro-
cesses.

FIG. 8. Randomized binomial
multiplicative process, withp ap-
proximately 0.4. Values on both
axes are arbitrary.
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Lacunarity analysis, in contrast, is a far more general
technique. It can be applied to data of any dimensionality, to
both binary and quantitative data, and to fractal, multifractal,
and nonfractal patterns. It allows the determination of scale-
dependent changes in spatial structure, which should give
insight into underlying processes. Lacunarity analysis also
reveals the presence and range of self-similarity. The tech-
nique is easily implemented and gives readily interpretable
graphic results. We believe it will find wide applicability in
those fields concerned with description of spatial patterns; in
fact, it has already been successfully applied in the analysis
of synthetic aperture radar imagery@13#.
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