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Lacunarity analysis: A general technique for the analysis of spatial patterns
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Lacunarity analysis is a multiscaled method for describing patterns of spatial dispersion. It can be used with
both binary and quantitative data in one, two, and three dimensions. Although originally developed for fractal
objects, the method is more general and can be readily used to describe nonfractal and multifractal patterns.
Lacunarity analysis is broadly applicable to many data sets used in the natural sciences; we illustrate its
application to both geological and ecological d&®1063-651X96)01505-X]

PACS numbg(s): 07.05.Kf, 89.60+x, 91.65—n, 92.40.Fb

I. INTRODUCTION II. THE GLIDING BOX ALGORITHM AND LACUNARITY
ANALYSIS

An important goal in the natural sciences, such as geol-
ogy, ecology, and epidemiology, is the quantification of spa-
tial patterns. However, these patterns are often complex, ex- As defined by Gefen, Meir, and Aharof§], lacunarity is
hibit Sca|e_dependent Changes in structure, and ar@e deviation of a fractal from translational invariance.
correspondingly difficult to identify and describe. As a re- Translational invariance can, of course, also be a property of
sult, the advent of fractal mathematics has been greeted efonfractal set{7]. In addition, translational invariance is
thusiastically by many natural scientists and fractal techhighly scale dependent; sets which are heterogeneous at
niques have been increasing|y app'(abrton and La Pointe small scales can be quite homogeneous when examined at
[1]). To date, however, this application has been generalljarger scales or vice versa. Lacunarity can thus be considered
restricted to the calculation of the fractal dimension and rea scale-dependent measure of heterogeneity or texture of an
lated parameters. Newer methods, such as multifractals, aabject, whether or not it is fractar].
only beginning to be use@lilne [2], Lam and De Col&3]). A number of algorithms have been proposed for measur-

In this paper we will show how the concept of lacunarity, ing this property{5,6]; we have adopted the intuitively clear
which was originally developed to describe a property ofand computationally simple “gliding box” method of Allain
fractals(Mandelbrot4]; Lin and Yang[5]; Gefen, Meir, and and Cloitre[7]. Simple examples demonstrate the use of this
Aharony|[6]; Allain and Cloitre[7]), can be extended to the algorithm for binary data. lllustrated in Fig. 1 are five one-
description of spatial distribution of real data sets, including,dimensional sets which differ in translational invariance;
but not restricted to, those with fractal and multifractal dis-they could, for example, represent such empirical data as the
tributions. occurrence of a tree species along a transect. All sets have

The approach we use is an elaboration of the lacunarityhe same lengtkM =256) and the same number of occupied
algorithm developed by Allain and Cloitre’], which was sites(S=44). Set A’s points are all clustered at the extremes
introduced to ecologists in a previous pap@} In this paper of the line; set B’s approximate a fractal\yedust; set C’s
the algorithm is used as the basis of a more general approaeine randomly placed; and set D’s are regularly distributed. In
to the study of spatial distributions. We review the algorithmset E, the points occur in clumps of four points but these
and show how it can be used to describe both binary andlumps are randomly distributed. Set E could represent a
count (quantitative data and can be applied to data of anycase where groups of treékhe clumpg are themselves ran-
dimensionality. The method is applied to a number of modedomly spaced; i.e., there are two distinct scales to the pat-
data sets, including multifractals, and we demonstrate how itern.
can be used to uncover scale-dependent changes of spatial A box of lengthr is placed at the origin of one of the sets
structure. We then document the application of the method téFig. 1). The number of occupied sites within the b@ox
empirical data sets from ecology and geology. mass equal t®) is now determined. The box is moved one

A. The gliding box algorithm: Applications to binary sets
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space along the set and the box mass is again counted. This A(r)=Z(2)I[Z(1)]?. ®)
process is repeated over the entire set, producing a frequency

distribution of the box masse¥s,r). This frequency distri- This calculation is repeated over a range of box sizes, rang-
bution is converted into a probability distributi&(s,r) by  ing fromr =1 to some fraction oM (we usually usé/2). A
dividing by the total number of boxeN(r) of sizer. The log-log plot of the lacunarity versus the size of the gliding
first and second moments of this distribution are now deterbox is then produced. Lacunarity plots for the sets in Fig. 1

mined: are illustrated in Fig. 2.
The statistical behavior aA(r) and the shape of the la-
Z(1)=2sQ(s,r), (1) cunarity curves can best be understood by recalling that
Z(2)=35%Q(s,r). ) Z(1)=s(r), (4
The lacunarity for this box size is now defined as Z(2)=s%(r)+s4(r), )
0.8 - ;
B
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wheres(r) is the mean and?(r) the variance of the number [8]. Note also that, as expected, for the regularBaiquals

of sites per box. As a result, zero (D-E=-1) for box sizes smaller than the repeating
pattern(each box contains only a single point
A(r)=s2(r)/s*(r)+1. (6) The random set, in contrast, forms a concave upward

curve, with a sharp dropoff at small box sizes. This is due to
The lacunarity statistic is thus a dimensionless representatiorfimdom patterns being statlstlcal_ly invariant at larger scales.
An examination of the lacunarity curve for set E, the ran-

of the variance to mean ratio and is closely related, therefore \v distributed cl q trates how | i
to a number of statistics, such as Morisita’s index, that hayd MY distriouted ciumps, demonstratés now lacunarity can
: e used to detect scales. The curve declines gradually to a
long been used in ecolod@]. break boint at a 1oa b . t about Glox si |
From this relationship, and by examining the Iacunarity4rea pain adg 0,? tﬁx size of?houlc( X slltztehequda tI(')
curves in Fig. 2, it can be shown that the lacunarity for bi- ), corresponding 1o the size of the ciumps. Tt then declines
more rapidly, with the concave upwards portion of the curve

nary data is a function of the following. ; .
(1) The fraction R=S/M) of sites that are occupieds corresponding to the scales above that of random behavior.
In sum, lacunarity curves of one-dimensional sets have

the mean number of occupied si oes to zeroA goes . ) : 2
b @) g A g rgls'unct breaks in slope corresponding to distinct scales

to «. Sparse sets will thus have higher lacunarities thart >
P 9 within the sets. Fractal patterns, because they have the same

dense sets, for the same gliding box sizes. appearance at all scales, produce straight lacunarity plots
2) The si idi ! . 'E i > :
(2) The size r of the gliding bon general, except for This result is also true for higher dimensigris8].

highly clustered setée.g., set A in Fig. Llarger boxes will
be more translationally invariant than smaller boxes; i.e., the

second moment declines relative to the first. The same se®. An empirical example: y-ray peaks from geologic well logs
will thus have lower lacunarities as the size of the boxes

increases. For all sets, since Q(1,1)=P, techni .
2 2 — . . ique for the measurement of the natural levels of radio-

Z(2)/[Z(1)]"=P/P", andA(1)=1/P. This value is solely a activity in rock formations:y rays are predominantly emitted

function of the percentage of occupied sites and is mdeperby 40, which is found in high concentration in clay-rich

dent of the overall size of the set and details of its geometry,J.< <. ch as shales. Rocks with a low percentage of clays
A similar constraint occurs if the box is the size of the entire¢ | .1 s clean sandstones generally have a low level of ra
set; then the variance component of the second moment is(ﬂoactivity. Consequentlyyiray well logs can be used to
andA(M) must equal 1. As aresult, since all five sets in Fig. yotormine the vertical distribution of sand and shales in bur-
1 hf”“’e the same values Bfgnd M, they andx intercepts of o 1ock formations. Figure(3d) shows the depth distribution
their lacunarity curves are identical. . . of y-ray emission peakg'kicks” ) in a portion of a well log

() T'he geqmetry of the seftor a.g|venP and'r hlgher ._from the Triassic Taylorsville basin of North Carolina. The
lacunarity indicates greater clumping. Set A in Fig. 1 iSyqcyq represent a long series of river-deposited sediments.
highly clustered, with a single large gap in the middle. Forrhe lacunarity curve for the entire sequer@81 peaks in
all r<M most boxgs are either mostly full or totally empty. 3439 feet is shown in Fig. &). For comparison, the la-
As a regult, the variance of box masses, and_ thus the lac.“nacfﬂnarity curve for the same number of randomly distributed
ity, is high over most of the range of box sizes. The slight eaks is also shown. It can readily be seen that-thay
initial increase of lacunarity as box size increases is due t eaks are far more élustered, at all scales, than would be

the greﬁt?_r nutrrr:bter of pz;:tlalkljy filled boxeshat I?r:gter E?ﬁ redicted from a random distribution and more closely ap-
Sizes. Notice that once the box size reaches that o roximate a fractal distribution. This result is consistent with

clumps, the curve de.cllnefs very rapidly. . other studies that have shown the fractal structure of strati-
In contrast, the points in set D are regularly distributed abraphic sequencds, 10]

a spacing oM/S. Oncer is greater than this valus,would
be constant at any location of the map, so the variance is
zero. The lacunarity of a totally regular array is thus 1 for
any gliding box size larger than the unit size of the repeating In many real data sets, the finest available resolution is
pattern. In addition, since the spacing of the point8liS or ~ greater than the grain of the ddiee., the scale at which the
1/P, theX andY intercepts are identical and the slope of thedata would resolve to point presence or absgn8ech data
lacunarity curve to this point should equall. The small are quantitative, rather than binary. Lacunarity analysis as
deviations from zero for larger boxes shown in Fig. 2 are dueriginally applied[6,7] was used only on binary data sets.
to the length of the regularly spaced sequence being shortéwurther inspection of the method, however, reveals it is
than the total sampled length. equally applicable to quantitative data. The box masses are
Sets B and C are intermediate cases. As expected, ti#s and 1's only for =1. For all larger values af, however,
lacunarity of the Ley dust is higher over all box sizes than box masses can range from 0 ttain the one-dimensional
that of the random sequence, since thenLeust is hierar- case or 0 tor? in two dimensions(and so on for higher
chically clumped. The lacunarity curve of the self-similar dimensiong Consequently, using quantitative data is analo-
sequence is nearly linear. As described by Allain and Cloitregous to beginning the analysis at a coarser level of resolu-
[7], the lacunarity curve for self-similar monofractals shouldtion. The lacunarity can thus be calculated by using the sum
be a straight line with a slope equalfo- E, whereD andE  (or integra) of the distribution in a box of size.
are the fractal and Euclidean dimensions, respectively. The In addition, recall that lacunarity is also a measure of the
deviations from linearity in Fig. 2 are due to the short lengthvariance to mean ratio of box mass. In this context, if the
of the sequence. Analyses of larger sets are much more linetatal mass(or measure sensuMandelbrot[4]) is spread

Well logs of y-ray emissivity versus depth are a standard

C. Modifications for analysis of quantitative data
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evenly over the entire set, then the variance, and thus theailiar multifractal set, that produced by the binomial multi-
lacunarity, will be low. If the mass is concentrated at a fewplicative proces$11]. The binomial multifractal can be used
points, however, box mass variance and lacunarity will beas a model of sequences where the distribution of material is
high. produced by processes acting multiplicatively at many
The application of lacunarity analysis to quantitative datascales. Briefly, a given mass is distributed along a particular
can be illustrated by performing lacunarity analysis on a fageometric support, such as a line. A fractipiof the mass is
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found on half the line, and a fraction f-along the other his original formulation of the multifractal concept, referred
half. Each half line is also divided in half, with the same to them as “nonlacunar fractals.” Future work should exam-
proportions of the material being found on each side. Thigne the relationship of lacunarity to other statistical represen-
procedure produces a self-similar distribution of massesiations of multifractals, such d$a) curves and the distribu-
with some locations having extremely high values and other§on of mass exponenfd.1].
extremely low values. The range is a function @f Two
representative sets are shown in Fig&)4and 4b), with
p=0.3 and 0.1, respectively. Notice that the lower the D. Examples: Yellowstone seedlings and sediment transport
value, the larger the range of masses after the same number
of iterations. The utility of lacunarity analysis as a general tool for
The lacunarity curves for these distributions are shown irspatial analysis of quantitative data is illustrated by its appli-
Fig. 5. As is the case for the fractals, the self-similar multi-cation to two diverse and seemingly unrelated data sets. The
fractals produce a linear lacunarity curve. Lacunarity carfirst data set, illustrated in Fig. 6, details the pattern of lodge-
thus be used as a method to detect the presence of multifrapele pine seedling regrowth four years after the Yellowstone
tal structure in a data set. The line for the-0.1 has a higher fires of 1988. The data were collected 23 July 1992 near
intercept than that fop=0.3, reflecting the greater range of Cougar Creek, just inside the Yellowstone National Park
values in the latter sequence. Since ¥himtercept is fixed, western boundary. The sequence represents the number of
the slope is also a function @. Note that for these sets, the seedlings in consecutive 1 2msquares along a 3.4 km
slope of the curve no longer represents the fractal dimensiotiransect. Since the seedlings are very small, their distribution
as it does for monofractals. could be represented as binary only at a scale far smaller
As with fractals, lacunarity can be used to identify than that dictated by the sampling design.
changes of scale within multifractal distributions. A two-  The second data séfig. 7) is time series data of bedload
scale binomial multifractal is shown in Fig(e}. The first six  transport rategsmass of sediment passing a particular point
iterations were performed witp=0.1, the next five with per unit timg in the East Rosebud River, Montana, in July
p=0.3. The resulting lacunarity curve is shown in Fig. 5.1988. Bedload transport rate was measured at 1 min intervals
Notice that the curve is more-or-less parallel to the line forfor 10 h[9].
p=0.1, up to a box size of 64, and then parallels the line for Both of the empirical distributions are probably produced
p=0.3. The break in slope thus corresponds exactly to théy interacting multiplicative processes acting at many scales
change in scaling of the original distribution. This immedi- (see below. As a result, comparison sequences were gener-
ately indicates how multifractal models can be compared tated by modifying the binomial multiplicative proce€sg.
empirical data sets for the detection of scale-depender8). Instead of the leftor right) side of the segment always
changes in spatial behavior. receiving the same proportion of material at each iteration,
It may seem surprising that lacunarity analysis can behe side receiving the largest fraction was randomly chosen.
applied to multifractal distributions, since Mandelbfdt, in As a result, the peaks are generally symmetrical. In addition,
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the exact proportions are allowed to vary normally aroundcurve. In contrast, both curves for the empirical data show

the mean value op=0.4. The sequence produced is muchdistinct breaks in slope. These breaks may represent scale-
closer in appearance to the empirical data sets shown in Figeelated changes in the dominant process controlling the dis-
6 and 7 than are the binomial sequences in Fig. 4. tribution.

The lacunarity curves for these sequences are shown in For example, the Yellowstone curve is linear to a box size
Fig. 9. In order to facilitate comparisons, the curves wereof about 25 m, a distance approximately equal to the distri-
normalized to a common intercept by dividing through by bution of seedlings around individual isolated parent trees.
the value for box size equal to 1. Other changes in slope may reflect variations in the effects of

Note first that despite the randomization, the random multopography, soil suitability, and fire severity. An important
tifractal sequences produce an essentially linear lacunaritgiological factor may be spatial variation in the distribution
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of serotiny, a trait present in some lodgepole pines, in which Ill. DISCUSSION

fire is required to open the pine cones and thus distribute

seeds. These physical and biological factors all act at specific Although fractal methods are starting to become part of

scales.

the standard approach to the analysis of spatial patterns, they

Similarly, the sediment transport curve shows distinctare often inadequate to describe the full range of real pat-
breaks at about 4 and 30 min. These changes in behaviterns. Real patterns may or may not be fractal; when fractal
may result from nonlinear feedbacks between the heterogestructure exists, it may be only over a limited range of orders
neous material on the stream bed, the material in transporbf magnitude; and patterns with the same fractal dimension

and local fluctuations in stream hydraulid?].

may still look different; i.e., have different “textureg4].

FIG. 9. Lacunarity analysis of
the patterns in Figs. 6 and 7, com-
pared to similar length random-
4| ized binomial multiplicative pro-
cesses.

1.0 T T T T T v T T T T
e - - - Sediment transport
U Yellowstone seedlings
N —— Random binomial multifractals
08 f \ 1
\Y
A
AY
\
— \
£ 06 f \ ]
g \
3 ‘\
Q
3 \
b \
o \
= 04 N
AY
\
\
AY
\
AY
N\
0.2 N i
N
\\\
00 b v v TTmeeed -
0.0 1.0 2.0 3.0

log,o(box size)



5468 ROY E. PLOTNICKet al. 53

Lacunarity analysis, in contrast, is a far more general ACKNOWLEDGMENTS
technique. It can be applied to data of any dimensionality, to
both binary and quantitative data, and to fractal, multifractal, Texaco, Inc. is thanked for providing the well log data.
and nonfractal patterns. It allows the determination of scaleResearch was funded by the Ecological Research Division,
dependent changes in spatial structure, which should giveffice of Health and Environmental Research, U.S. Depart-
insight into underlying processes. Lacunarity analysis alsgnent of Energy under Contract No. DE-AC050840R21400,
reveals the presence and range of self-similarity. The techyg by grants from the National Science Foundation to
nique is easily implemented and gives readily interpretablg; £ p~ and K.P.(Grant No. EAR-890484 and to W.
graphic results. We believe it will find wide applicability in Romme, M. Turner, and R.H.GGrant No. BSR-901831

those fields concerned with description of spatial patterns; icclmd from Texaco, Inc. to R.E.P. Parts of this work appeared
fact, it has already been successfully applied in the analysis different form i,n[l4.] T

of synthetic aperture radar imag€gn3].

[1] Fractals in Petroleum Geology and Earth Processdited by ology and Earth Processesdited by C. C. Barton and P. R.
C. C. Barton and P. R. La Point®lenum, New York, 1996 La Pointe(Plenum, New York, 1996

[2] B. Milne, in Quantitative Methods in Landscape Ecolpgyl-  [10] G. Korvin, Fractal Models in the Earth Scienceg&lsevier,
ited by M. G. Turner and R. H. GardnéSpringer-Verlag, Amsterdam, 1992
New York, 199). [11] J. FederFractals (Plenum, New York, 1988

[3] Fractals in Geographyedited by N. S. Lam and L. De Cola [12] K. Prestegaard and R. Plotnick, firactals in Petroleum Ge-
(Prentice-Hall, Englewood Cliffs, N.J., 1993 ology and Earth Processesdited by C. C. Barton and P. R.

[4] B. Mandelbrot, The Fractal Geometry of NaturéFreeman, La Pointe(Plenum, New York, 1995
New York, 1983. [13] G. M. Henebry and H. J. H. Kux, Int. J. Remote Sensliy
[5] B. Lin and Z. R. Yang, J. Phys. A9, L49 (1986. 565 (1995

[6] Y. Gefen, Y. Meir, and A. Aharony, Phys. Rev. LeB0, 145
(1983.

[7] C. Allain and M. Cloitre, Phys. Rev. A4, 3552(1991).

[8] R. Plotnick, R. H. Gardner, and R. V. O’'Neill, Landscape
Ecology8, 201 (1993.

[9] R. Plotnick and K. Prestegaard, Fractals in Petroleum Ge-

[14] R. Plotnick, inNonlinear Dynamics and Fractals: New Nu-
merical Techniques for Sedimentary Data. SEPM Short
Course No. 36edited by G. V. Middleton, R. Plotnick, and D.
M. Rubin (SEPM: Society for Sedimentary Geology, Tulsa,
1995.



