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Abstract

Management decisions concerning impacts of projected changes in environmental and social conditions on multi-use forest
products and services, such as productivity, water supply or carbon sequestration, may be facilitated with signal-transfer
modeling. This simulation method utilizes a hierarchy of simulators in which the integrated responses (signals) from smaller-
scale process models are transferred and incorporated into the algorithms of larger spatial- and temporal-scale models of
ecological and economic phenomena. Several innovative procedures germane to multi-issue sustainable forest management
have been initiated in our signal-transfer modeling development for forests of the southeastern United States. These
developments include response surface interpolation for multi-factor signal-transfer, use of loblolly pine modeling to infer
the growth of other southern pines, determination of soil nutrient limitations to productivity, multivariate clustering as a
spatial basis for defining land units relevant to forest management, and variance propagation through the modeling
hierarchy. Algorithms for larger scale phenomena are shown to constrain the variance introduced from a smaller-scale in a
simulation of ambient ozone exposure effects on loblolly pine timber yield. Outputs of forest variables are frequency
distributions that may be statistically compared for alternative environmental or management scenarios. Published by
Elsevier Science B.V.
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range of resources and services needs to be conducted
in a manner that preserves or enhances the life-
sustaining qualities of these ecosystems. Determina-
tion of criteria, indices and verifiers for sustainability
have been proposed (e.g., Stork et al., 1997), and
conferences have been held to obtain various per-
spectives about sustainability (e.g., Flinn et al., 1998).
Sustainable forest management of public and private
lands increasingly concerns multi-use issues such as
biodiversity, wildlife habitat and municipal water
supply in addition to sustainable productivity. How
should forests be sustainably managed with changing
environmental conditions, variable soil types and
topography, a dynamic economic environment and
changing public aesthetic values? Evaluation of such
multi-use and multi-scale issues may be facilitated
with a hierarchy of simulators in which results
(signals) from smaller-scale process models are
transferred and used in larger spatial- and temporal-
scale models of ecological and economic phenomena.
This is the basic concept of signal-transfer modeling.

In the management of human systems, such as
regional reserves of a consumable resource (e.g., gaso-
line or fuel oil), planning is made for predictable
changes (e.g., holiday travel, seasonal weather changes);
however, less predictable changes (e.g., cold snap) can
cause supply problems. Quantification of temporal
changes in fuel demand is incorporated as information
in management of regional fuel reserves, and these
vary spatially from region to region. In the case of
trees and forests, information transfer across increas-
ing temporal scales provides the means for incorpor-
ating hourly ecophysiological responses of trees
to environmental factors into forest management
decisions operating over a plantation harvest cycle.
Determination of the appropriate signals to pass
between simulators is an ongoing research challenge.
Nevertheless, some insights have been gained from
initial signal-transfer modeling studies. We distin-
guish signal-transfer modeling from response-transfer
modeling. In the latter, outputs from one scale do not
enter simulation algorithms of the larger scale models,
but are simply aggregated to the larger scale.

Some exploration of signal-transfer modeling has
been undertaken in two applications that examined
environmental change impacts on forests (Luxmoore
et al., 1990, 1998). In these studies atmospheric
CO, enrichment and ambient ozone effects on foliar

physiology were simulated with an hourly time-step
ecophysiological model to obtain annual stem growth
responses (tree-ring signals). These diameter growth
responses to changes in air quality were incorporated
into the algorithm of an annual time-step simulator of
forest growth. The enhanced productivity of a decid-
uous forest simulated with CO, enrichment declined
with time, whereas, ambient ozone exposure caused a
small decline in simulated timber yield of a loblolly
pine (Pinus taeda) plantation. In both cases short-term
physiological responses induced the long-term result.
An expanded development of signal-transfer modeling
was initiated for regional assessment of forests in 13
states of the southeastern United States. This regional
assessment method incorporates responses of several
forest species to changes in precipitation, air tempera-
ture, tropospheric ozone, atmospheric CO,, and N
deposition (Luxmoore et al., 2000). Several aspects of
this modeling development are examined in this report
for their utility in sustainable management of southern
pine forests. Comparisons of various management
alternatives in the regional assessment modeling
framework provide a means for evaluating practices
that enhance or maintain forest productivity (site index)
and ecosystem attributes over multiple rotations.
This modeling method is adaptable to practical defini-
tions of ‘“‘sustainable forest management” for which
measurable attributes such as stand productivity, soil
organic matter or soil nitrogen may be determined. The
signal-transfer method is adaptable to any ecosystem
attribute represented in the signal-transfer suite of
simulators.

In this report, we outline several aspects of infor-
mation transfer between six models and describe two
examples of signal-transfer identified by Luxmoore
et al. (2000). We also discuss the inclusion of data
variability with Monte Carlo simulation, application
of response surface interpolation for signal-transfer
and the use of spatial clustering as a means for
identification of ecologically based forest management
units. Finally, we address the incorporation of change
in land quality (site index) into land-use modeling.

2. Signal-transfer modeling

Our most comprehensive development of signal-
transfer modeling has been undertaken for regional
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assessment purposes (Luxmoore et al., 2000). In this
development, the signal-transfer framework involves
six models, empirical mensuration data summarized
as forest growth types, and various spatial data in a
GIS system (Fig. 1). The models in this scheme range
from a detailed canopy irradiance model (MAESTRO)
to a loblolly pine plantation management model
(PTAEDA2). Management options such as forest ferti-
lization, planting density, vegetation (weed) control
and thinning may be addressed with this hierarchy of
models; these management options are relevant to
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Fig. 1. Signal-transfer modeling framework: ecophysiological
model (SPM, UTM) responses to air quality and climate change
are transferred as annual stem wood increments to the scale of
stand dynamics (LINKAGES), which translates to site index
signals used in plantation management simulation (PTAEDA?2) for
loblolly pine applications. Outputs from LINKAGES combine with
Growth Types to inferentially determine responses of several
southern pine species for the selected scenario. Simulations with
LINKAGES for slash pine may be combined with results for other
pine species in a GIS. Soil chemical limitations to productivity are
tested with the NuCM code. Various forest management options
may be examined through the SPM, NuCM and PTAEDA?2 models.

sustainable forest management. First we give brief
comments on the component models in the hierarchy.

The MAESTRO model provides hourly calcula-
tions of light interception in a canopy, and the
absorbed radiation values are used in photosynthesis
subroutines incorporating leaf and atmospheric data to
determine net primary production (Wang and Jarvis,
1990). A version of MAESTRO, specific for the
physiology and canopy shape of loblolly pine
(Baldwin et al., 1998), is used to calibrate a simple
big-leaf photosynthesis algorithm in a whole plant
simulator (UTM; Luxmoore, 1989). This model
calibration is explained in a later section.

A loblolly pine version of the UTM (Luxmoore
et al., 1998) and the slash pine model (SPM, Cropper
and Gholz, 1993a,b) simulate ecophysiological pro-
cesses (Fig. 1) with representation of above- and
below-ground processes for two dominant pine
species in the southeastern United States. The annual
stem wood increments from SPM and UTM simula-
tions are equivalent to tree-ring growth, and these
“tree-ring”’ signals are transferred to either the slash
pine or loblolly pine version of LINKAGES. The
LINKAGES model of stand dynamics (Pastor and
Post, 1986) simulates the establishment, growth and
mortality of trees in a forest community or plantation
using species-specific growth and longevity charac-
teristics. The tree-ring signal enters the diameter-
growth algorithm in LINKAGES as a scaler (0-1)
normalized relative to a calibrated base case simula-
tion. The average heights of dominant and codominant
trees simulated in LINKAGES at a stand age of 25 years
determine the site index signal used in plantation
management simulations. Since N is the only nutrient
simulated in LINKAGES, a soil nutrient cycling
model, NuCM, is used to evaluate limitations to tree
growth due to soil nutrients other than N (Liu et al.,
1991a,b). Additional comments on the signal-transfer
relationship between NuCM and LINKAGES are
given in the later section. The significant contributions
of the NuCM code to sustainable forest management
include simulation of soil nutrient deficiency effects
on growth and forest responses to fertilization as a
management option.

The site index values simulated by LINKAGES
for various scenarios are next transferred to the
PTAEDA?2 plantation management model (Burkhart
et al., 1987) for determination of merchantable lumber
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production (Fig. 1). Management decisions involving
planting density, vegetation control, fertilization and
thinning may be examined with PTAEDA2 for
loblolly pine plantations of the southeastern United
States. Management practices that sustain ecosystem
processes over several rotations under changing air
quality and changing climate conditions may also be
explored.

The determination of growth types for southern pine
species by Zeide (1999) provides an opportunity for
evaluating scenario impacts on southern pine species
other than loblolly pine and slash pine. There are
several southern pine species (white, P. strobus;
shortleaf, P. echinata; Virginia, P. virginiana; long-
leaf, P. palustris; sand, P. clausa; pond, P. serotina)
that grow in areas with loblolly pine. The responses of
these other southern pines to selected scenarios of
change may be estimated inferentially from simula-
tions of loblolly pine. In this inferential method,
scenario simulations of loblolly pine with LINKAGES
provide average tree heights at two ages for determi-
nation of the height growth type by the two-point
method of Zeide (1999). This simulated height growth
type for a particular scenario is used to infer the
expected growth of other southern pines from
empirical relationships between loblolly pine growth
and the growth of co-occurring southern pine species.
This procedure extends the range of analysis to
southern pine species that are not directly simulated;
however, the method needs further development to
determine its merits and limitations.

One advantage of the signal-transfer method is its
ready use in specific applications where more is
known of tree responses at a scale smaller than at the
scale needed for management decisions. This was the
case for the signal-transfer applications examining
atmospheric CO, and tropospheric ozone effects on
forests (see Section 1) in which foliar responses to air
quality were integrated to the scale of stand produc-
tivity. Other ecophysiological simulators for loblolly
pine, such as the TREGRO model of Constable and
Retzlaff (1997), may be incorporated into the signal-
transfer modeling hierarchy. Any of the models in
Fig. 1 may be revised or replaced with suitable
alternatives to incorporate new scientific information
and developments.

Next, we address two examples of information trans-
fer between modeling scales involving calibration of a

big-leaf model of photosynthesis and soil nutrient
limitations to productivity.

2.1. Calibration of a big-leaf model

The MAESTRO model provides a calibration
constraint for a big-leaf model of net photosynthesis
implemented in the UTM code. Net photosynthesis
per unit leaf area is calculated in the UTM with a CO,
gradient equation (Penman and Schofield, 1951)
having the following form:

COsa — COyc

; ()
Ry + Ry + Ry

Net photosynthesis = A X
where the A value converts CO, to an equivalent
sucrose mass, CO,4 is the atmospheric CO, concen-
tration, CO,c the CO, concentration-at-the-chloro-
plast, R, the mesophyll resistance, R the foliar
stomatal resistance and R, the boundary layer resis-
tance.

The big-leaf photosynthesis model does not account
for the self shading of leaves as leaf area increases
with stand development. Calibration of the UTM
photosynthesis calculation is undertaken by adjust-
ment to the photosynthesis result obtained with
detailed canopy light absorption relationships in
MAESTRO. In this process a function is generated
between the minimum value for CO,-at-the-chlor-
oplast (CO,c) and leaf area index (LAI). This function
causes photosynthesis per unit leaf area in the UTM to
decrease with increase in LAIL

The MAESTRO model determines net photosynth-
esis for a three-dimensional canopy structure that
accounts for differential light absorption by foliage
(Wang and Jarvis, 1990). In this calibration, net
photosynthesis values for optimal growing conditions
were equated to the photosynthesis calculated in the
UTM for the same conditions. Water stress and
nitrogen limitations were excluded from the simula-
tions of both models so that only shading effects were
represented.

The CO,-at-the-chloroplast variable in the UTM was
adjusted to give the same daily net photosynthesis as
simulated with MAESTRO at a particular LAI value. A
mean minimum CO,¢ was obtained for all of the hourly
values simulated in a 30-day period without water
and nutrient stress. The process was repeated for a
range of LAI values to generate a calibration function.
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This function was added to the UTM in the following
form:

COyc = 98.98 + (1572 % LAIO‘3787)_ 2

The #* for this function is 0.999. An increase in LAI
causes COyc to increase thus reducing the rate of net
photosynthesis per unit leaf area in UTM calculations.
The minimum value of CO,c is 99 pl/l and this
quantity rises to 128 and 137 pl/l at LAI values of
5 and 10, respectively.

Internal regulation of photosynthesis in UTM
simulations operates by increasing CO,c as leaf
sucrose accumulates. Feedback regulation due to
leaf sucrose accumulation is applied in addition to
the specific minimum CO,c selected for the LAI value
in a particular simulation step. Leaf sucrose accumu-
lation develops when environmental conditions, such
as water stress or nitrogen limitation, reduce the tissue
growth sinks for sucrose. Growth processes are more
sensitive to these environmental stresses than is photo-
synthesis (Luxmoore, 1991). We note that Eq. (2),
determined for UTM applications, may not be directly
applicable to other big-leaf models.

The SPM model for slash pine has a layered canopy
structure that directly accounts for shading effects.

2.2. Soil limitations to productivity

LINKAGES incorporates nitrogen cycling and
provides stand growth responses appropriate for the
soil organic matter and soil nitrogen status at a site.
These capabilities have been utilized in simulation of
loblolly pine growth responses to application of
biosolids (Luxmoore et al., 1999). However, other
soil nutrient limitations occur through the southeastern
United States. The use of the NuCM code provides a
means for simulation of soil nutrient limitation effects
on pine growth due to P, K, Ca, Mg or S deficiency.

A two-step process is used. First LINKAGES
determines tree growth as a function of stand age
for a site and an environmental scenario of interest.
The LINKAGES simulations of biomass as a function
of time are next provided to NuCM. These values
represent the maximum stand growth for the climate,
water and nitrogen status of a site. Simulation with
NuCM determines if this level of productivity can be
sustained when P, K, Ca, Mg and S are included in the
simulation of soil chemical processes.

NuCM determines an annual growth limitation
factor that is applied to the annual productivity values
from LINKAGES. Factor values less than unity result
when nutrient limitations, such as phosphorus and
potassium, develop. Soil variability is a significant
reality at forest sites. We use Monte Carlo simulation
methods to incorporate variability effects in all models
of the signal-transfer hierarchy, including LINKAGES
and NuCM.

3. Monte Carlo simulation

Essentially all aspects of biological and environ-
mental processes involve variability. Monte Carlo
simulation incorporates this variation in evaluations of
alternative scenarios with the advantage that scenario
results may be statistically compared. We use Latin
hypercube sampling, an efficient Monte Carlo method
(McKay et al.,, 1979) that requires relatively few
simulations (e.g., 50-100) to incorporate the prob-
ability distributions of input variables. One concern
with the propagation of variability from smaller to
larger scales is the possibility of error multiplication
through the hierarchy. We examine the consequence of
variance transfer in Section 3.1 with results from a
completed study conducted with three models and two
signal-transfer stages.

3.1. Variance propagation

The signal-transfer modeling of ambient ozone
effects on loblolly pine production (Luxmoore et al.,
1998) involved information transfer between three
models representing physiological processes (UTM),
stand dynamics (FORET, a simpler version than
LINKAGES) and plantation management (PTAEDA2).
The coefficient of variation of simulated variables from
these three models (Table 1) shows a consistent
magnitude in the range of 1.5-3.8%. There is no
evidence for expanding or compounding variance in
this signal-transfer application. The signals introduced
from a lower scale are incorporated into the modeling
structure of the upper scale processes which constrain
the expression of variance introduced from a lower
scale. For example, variance in the stem increment
multiplier (from the UTM) is applied to the biomass vs
diameter function in FORET (same as in LINKAGES),
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Table 1

Mean, standard deviation and coefficient of variation of variables from signal-transfer modeling with three simulators (UTM, FORET,
PTAEDA?2) for a scenario of ambient ozone exposure in a loblolly pine plantation (from Luxmoore et al., 1998)

Mean Standard deviation Coefficient of variation (%)
UTM (ecophysiology, hourly simulation)
Annual stem wood increment ratio® 0.946 0.035 3.7
FORET (stand dynamics, monthly simulation)
Site index” at 25 years (m) 19.0 0.35 1.5
PTAEDA?2 (forest productivity, annual simulation), 35 years harvest results
Total basal area (m*/ha) 23 0.6 2.6
Stem volume (m>/ha) 250 6.7 2.7
Cordwood yield (cord/ha) 93 2.5 2.7
Lumber yield (board feet) 9910 380 3.8

# Variable transferred from UTM to FORET.
® Variable transferred from FORET to PTAEDA2.

which has decreasing diameter increments as tree
size increases. This gives a damping influence on any
signal coming from a lower scale model. Similarly,
the variance in site index determined in FORET is
constrained by the empirical relationships between
loblolly plantation productivity and site index that are
part of the structure of the PTAEDA2 model. The
LINKAGES model, used in subsequent signal-transfer
modeling, is derived from FORET by inclusion of
algorithms for soil-plant nitrogen dynamics.

4. Other aspects
4.1. Response surface interpolation

Berry and Minser (1999) devised a method to record
the responses of repeated simulation results for various
combinations of environmental driving variables in
hypervolume response surfaces. Response surfaces
provide an archive of simulation results that define the
output signals in relation to the driving variables at a
particular scale. A hypothetical example is shown for
two factors, atmospheric CO, and precipitation (Fig. 2).
Relative stem growth responses for these two environ-
mental variables is characterized with relatively few
simulations shown by ““x”” in Fig. 2. Nonlinear inter-
polation of the relatively sparse population of simula-
tions is used to characterize the whole surface across all
variables. This approach is suitable where simula-
tion results change smoothly with change in driving

variables. The benefit of reduced computation time
needed to characterize a response surface gains
appreciably as the number of variable levels declines.
For example, the number of simulations required for a
factorial combination of five variables at three levels
(3»5 ) is 781 simulations less than for four levels (45).

X Simulation results

e« Interpolation values

Y
o

Normalized Stemwood Signal

o

Atmospheric CO2

Fig. 2. A hypothetical response surface showing normalized stem
wood growth responses to atmospheric CO, and precipitation
variables. This smooth response surface is characterized by
relatively few simulations (shown by x). Transient scenarios use
small increment changes in the stemwood response obtained in
trajectories across the surface for sequential changes in atmo-
spheric CO, and precipitation (shown by ). This procedure
eliminates simulation with small scale models once the response
surface has been determined.
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Hypervolume response surfaces for five environmental
variables are advocated in the regional assessment
modeling of Luxmoore et al. (2000).

Following response surface characterization for
selected scenarios, interpolation is used to obtain
signal values appropriate for additional scenarios.
Interpolation has the advantage of eliminating the
need for repeated simulation with ecophysiological
models (UTM, SPM, Fig. 1) in scenario applications.
Berry and Minser (1999) included a multivariable
interpolation technique for estimation of response
surface values that are not specifically simulated.
Their interpolation technique also allows transient
scenarios to be readily undertaken by sequential
interpolation at small increments, such as hypotheti-
cally shown by “-”* in Fig. 2. Transient scenarios are
relevant for addressing environmental change in
relation to sustainable forest management.

4.2. Multivariate clustering

Hargrove and Luxmoore (1997, 1998) report a
multivariate clustering method that determines areas
in a region with predetermined ranges of variability of
attributes within all clusters. Various climate, soil,
vegetation and landscape data are used to statistically
determine land groupings. This clustering method is a
form of database stratification, and as such, provides a
means for defining forest management units from
ecologically relevant data. Higher numbers of clusters
may be obtained by choosing clustering criteria that
give lower variance of attributes within a cluster, i.e.,
smaller clusters become more uniform.

The application of clustering reported by Luxmoore
et al. (2000) incorporated a constraint in which the
clusters were contained within the boundaries of
the major land resource area (MLRA) land classifica-
tion system (USDA, 1981). In this procedure, the 78
MLRAs of the 13 southern and southeastern states
provide an established land classification within which
spatial clusters are statistically determined. This has
the benefit of linking modeling results to other
analyses that also use MLRAsS, such as the land-use
modeling of Hardie and Parks (1997). This method
preserves landscape features such as river valleys
showing that the identity of relatively fine scale and
ecologically distinct land units can be maintained in
regional-scale analyses.

4.3. Land quality (site index)

Hardie and Parks (1997) have shown that land
quality is an important determinant of land-use and
land-use change. Their modeling examines changes in
the proportion of various categories of land-use in
relation to timber price forecasts, price forecasts for
agricultural commodities, and population growth.
This land-use-share (LUS) modeling has been applied
to five southeastern states (Virginia, North Carolina,
South Carolina, Georgia, Florida) by incorporating
county-based attributes and economic projections
with four land-use categories (forest, farmland,
irrigated farmland, urban/other). County-based esti-
mates of land quality (productive capability) are
derived from USDA land capability classes and the
MLRA land classification.

Combining LUS modeling with signal-transfer
modeling provides a means for combining economic
factors into regional forest management planning.
Thus, ecologically based environmental effects may
be incorporated into economic forecasts of alternative
forest land-use. Land quality indices are incorporated
into LUS modeling with means and variances, and this
provides a point of connection with signal-transfer
modeling. Monte Carlo simulations of site index
provided by signal-transfer modeling supplies the land
quality index (mean, variance) needed for LUS
modeling. The signal-transfer modeling results can
be aggregated to a county basis from the proportional
representation of cluster results contributing to a
county. It is expected that significant change in land
quality, predicted for a given environmental change
scenario, could lead to changes in areas of various
land-use categories, since the modeling of Hardie and
Parks has shown the sensitivity of LUS to changes in
land quality.

5. Discussion

Sustainable forest management has different mean-
ings to different stakeholders, however, in all cases,
management involves human interaction with the
forest. Signal-transfer modeling can aid in determin-
ing suitable forms of human intervention that lead to
sustainable products and services from forests. In the
opinion of Powers and Morrison (1996) sustainable
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forestry centers on the wise management of soil.
Tiarks and Haywood (1996) have noted that the
productivity of short rotation pine plantations on
infertile Coastal Plain soils of the southeastern United
States can decline in the second rotation. Fertilizers
and amendments such as lime are likely to be
increasingly required for sustaining or enhancing
forest productivity. The NuCM code has capability to
address fertilizer management and liming require-
ments (Johnson et al., 1995). Issues of biodiversity of
woody species in mixed forest communities may also
be addressed with the forest succession capabilities of
LINKAGES (Pastor and Post, 1986).

The selection of signal variables to pass from one
simulator to another in the signal-transfer hierarchy
involves consideration of model input and output
variables and the algorithms that directly or indirectly
relate to these variables. Our investigations with
signal-transfer modeling have made pragmatic use of
existing simulators and the selection of rather few
signal variables. The benefits of signal-transfer
modeling may be enhanced with additional transfers
between modeling levels. Research on a fundamental
basis for information transfer between model scales
should add to the value and robustness of modeling by
the signal-transfer method.

The determination of land units from statistical
stratification of ecologically relevant data is a major
advance for landscape analyses over analyses that
employ arbitrary grid networks. For example, a
0.5° latitude x longitude grid has 672 cells across
the 13 southeastern states. The average size of a grid
cell is larger than the average size of the 1061 clusters
obtained for the same region by our method
(Luxmoore et al., 2000). Grid cells have essentially
uniform size of 3368 kmz, whereas, clusters vary from
50 to 29,000 km? in area. All clusters are irregular in
shape and contain similar variability of ecologically
significant variables. Regular grids do not conform to
the ecological realities of the landscape and cells
contain widely differing variability of attributes. We
advocate the use of MLRAS as a minimum framework
for addressing land management issues, and recom-
mend clustering within MLRAs as a flexible means for
adjustment of cluster size as the need for more or less
resolution is determined.

Several approaches have been undertaken in recent
years to incorporate uncertainty analysis into forest

growth models with methods that differ from the Latin
hypercube sampling adopted in our signal-transfer
modeling. Gertner et al. (1996) used Monte Carlo
simulation to evaluate the influence of variation (error)
of input variables (sensitivity analysis) of a forest
growth model on the variance of output results. This
output variance was partitioned in an error budget to
the contributing input sources. Guan et al. (1997)
assessed the accuracy of predictions of a forest growth
model with Monte Carlo simulations that sampled
assumed frequency distributions of model input
variables. They also applied an alternative sampling
approximation with an artificial neural network. Their
work showed, as we have found, that relatively few
variables have significant impacts on the uncertainty
of simulation results. The neural network sampling
approximation has merit where high dimensional and
nonlinear interactions between variables are important
contributors to variance propagation.

Green et al. (1999) conducted uncertainty analysis
of a forest growth model with a Bayesian synthesis
method. In their investigations, a Bayesian approach is
used to obtain frequency distributions of input
parameters for a stand growth model from uncertainty
simulations of an ecophysiological carbon flux model.
This follows the approach of Valentine et al. (1997).
Their investigation has similarity with our use of
uncertainty analysis in the signal-transfer hierarchy.
However, our approach differs in that all input
parameters and variables for all models are quantified
prior to application by calibration with experimental
data appropriate to the scale of each simulator
(Luxmoore et al., 2000). We determine a modification
(signal) to the value of a variable for a particular
scenario relative to a calibrated base case and do not
determine the absolute value of a transfer variable as
undertaken by Valentine et al. (1997).

6. Conclusions

Signal-transfer modeling provides a means for
gaining insight into possible large scale responses to
impacts that have or can only be quantitatively investi-
gated at a small scale. For example, stomatal responses
to multiple environmental stressors may translate to a
change in land quality (site index). Alternative manage-
ment adaptations to changes in land quality may be
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statistically determined from Monte Carlo simulation
results. The use of developed simulators at various
scales in a signal-transfer hierarchy takes advantage of
established quantitative relationships. New scientific
advances may be incorporated into the modeling
hierarchy at any scale by revision or replacement of
the component models. Combining Monte Carlo
simulation with a hierarchy of models in a signal-
transfer structure provides the computational resources
for statistically determining forest management prac-
tices that meet defined goals of sustainability.
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