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ABSTRACT
Reducing uncertainty in predictions of regional-
scale models depends on meaningful contrasts with
field measurements. This paper introduces a two-
stage process that works from the premise that an
appropriate goal for regional models is to produce
reasonable behavior over dominant environmental
gradients. We demonstrate two techniques for con-
trasting models with data, one based on the shape
of modeled relationships (functional contrasts) and
the other based on an examination of the residuals
(residual contrasts) between the model and an em-
pirically derived surface fit to field data. Functional
contrasts evaluated the differences between the re-
sponse of simulated net primary production (NPP)
to climate variables and the response observed in
field measurements of NPP. Residual contrasts com-
pared deviations of NPP from the empirical surface
to identify groupings (for example, vegetation
classes, geographic regions) with model deviations
different from those of the field data. In all model–
data contrasts, we assigned sample weights to field
measurements to ensure unbiased representation of

the region, and we included both constructive com-
parisons and formal statistical tests. In general, we
learned more from constructive methods designed
to reveal structure or pattern in discrepancy than
we did from statistical tests designed to falsify mod-
els. Although our constructive methods were more
subjective and less concise, they succeeded in re-
vealing gaps in our understanding of regional-scale
processes that can guide future efforts to reduce
scientific uncertainty. This was best illustrated by
NPP predictions from the Biome-BGC model, which
showed a stronger response to precipitation than
apparently operates in the field. In another case,
differences revealed in savanna and dry woodlands
had insufficient field-data support, suggesting a
need for future field studies to improve understand-
ing in this, and other, poorly studied ecosystems.

Key words: constructive model validation; resid-
ual analysis; regional analysis; regression; net pri-
mary productivity.

INTRODUCTION

Evaluating regional-scale models in a constructive
way presents unique challenges for two reasons.
First, regional-scale and local-scale models have dif-
ferent goals (for example, those described by Levins
[1966]). Modeling goals are important to consider

when designing meaningful comparisons with data.
Second, assembling field measurements that can be
used in such comparisons on a regional scale often
presents practical difficulties. Generality is an im-
portant goal for ecological models used to address
regional issues. Because they focus on important
large-scale patterns, such models are expected to
sacrifice local precision in favor of global adequacy.
Therefore, it is more important for model predic-
tions to reproduce regional patterns observed in
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nature than to reproduce site-specific field mea-
surements.

Regional-scale contrasts between models and
data typically require data collected from a variety
of sources to achieve the needed spatial coverage.
Overton (1990) used the term “found” data to de-
scribe measurements for which the probability of
inclusion in a sample is unknown. It is difficult to
discern how much weight each measurement
should be given in extrapolating to a specified pop-
ulation in the absence of a regional context. Be-
cause some types of sites could be overrepresented
and others underrepresented, appropriate weight-
ing of each datum is an issue. Here, we adopted
Overton’s (1990) methodology for placing our
found field data onto a common framework. We
used a post-hoc sampling design to combine many
disparate studies, much in the way a meta-analysis
does. Hargrove and Pickering (1992) provide strong
arguments that meta-analysis is needed in regional
ecology to make progress in discovering regional
patterns. Similarly, attention to defining a common
regional framework is important for model–data
contrasts at a regional scale. In summary, regional-
scale contrasts between models and field data share
two important concerns: (a) contrasts should mea-
sure model quality by the ability to represent large-
scale regional patterns in response to underlying
environmental gradients, and (b) contrasts should
ensure unbiased representation for both model pre-
dictions and field measurements at the regional
scale.

Our aim is to contrast model predictions against
field data in a way that identifies specific model
improvements or data needs, rather than merely
falsifying and then rejecting a model. The ultimate
objective is to reduce model (and scientific) uncer-
tainty by focusing on functional areas of discrep-
ancy. We define a constructive contrast as one that
attempts to discover and describe meaningful pat-
terns of differences between model predictions and
field data. In this study, we demonstrate two con-
structive techniques, one based on the shape of
modeled relationships (functional contrasts) and
the other based on an examination of the residuals
between the model and an empirically derived sur-
face fit to field data (residual contrasts). In the
functional contrasts, we compare field and model
relationships between net primary production
(NPP) and environmental gradients of temperature
and precipitation. This is motivated, in part, by the
assumption that NPP models rely on these two en-
vironmental variables as drivers and that feedback
about these relationships will be useful to modelers.
In the residual contrasts, we elicit constructive feed-

back through exploratory analysis of residuals. One
way to judge the quality of a model is by the ab-
sence of pattern in residuals (Zeide 1991; Jager and
Overton 1993). The goal of our residual analysis is
to find patterns in model–field data fit by grouping
or displaying residuals in informative ways.

Our approach builds on the evaluation of Vege-
tation/Ecosystem Modeling and Analysis Project
(VEMAP) models by Schimel and others (1997).
Schimel and others conducted both site-specific and
regional comparisons with VEMAP models: (a) site-
specific comparisons with OTTER transect and
Konza and CPER Long-term Ecological Research
sites, and (b) regional comparisons of NPP with the
Normalized Difference Vegetation Index (iNDVI).
These authors found that successful validation of
the three VEMAP models at particular sites did not
guarantee successful simulation of spatial variability
when compared with regional iNDVI. Although
site-specific validation was valuable for pinpointing
mechanisms behind model–data discrepancies,
comparison with comprehensive spatial data was
needed to evaluate regional-scale patterns of spatial
variation in NPP. They recommended using region-
al-scale spatial data, even when estimates of NPP
required extrapolation or indirect measurement.

NET PRIMARY PRODUCTIVITY DATA
AND MODELS

VEMAP Models

We illustrate our methods with estimates of net
primary productivity simulated in Phase I of the
Vegetation/Ecosystem Modeling and Analysis
Project (VEMAP) (VEMAP Members, 1995; http://
www.cgd.ucar.edu:80/vemap). VEMAP compares sim-
ulations of biogeography and biogeochemistry
models for the conterminous US under conditions
of contemporary and future atmospheric CO2 and
climate. The VEMAP Phase I biogeochemical mod-
els, BIOME-BGC (Hunt and Running 1992; Run-
ning and Hunt 1993), CENTURY (Parton and others
1987; Parton 1996), and the Terrestrial Ecosystem
Model (TEM) (Raich and others 1991; Melillo and
others 1993), simulate cycles of carbon, nitrogen,
and water in terrestrial ecosystems. The models rep-
resent the influence of climate and other environ-
mental variables on the dynamics of these cycles.
The potential vegetation of VEMAP is derived from
Kuchler (1964; 1975) and is aggregated into coarser
vegetation categories associated with each grid cell.
All of the models simulate NPP as the difference
between gross carbon uptake and plant respiration,
but they represent these processes in different ways
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with different levels of mechanistic or process-
based detail. For example, the BIOME-BGC simu-
lates carbon uptake by vegetation with a submodel
of daily canopy photosynthesis based on leaf bio-
chemistry; CENTURY simulates carbon uptake
through environmental limitations on monthly
maximum plant production. A detailed comparison
of the model’s representation of NPP can be found
in VEMAP Members (1995).

The VEMAP models have continued to evolve
since they were used to generate Phase I predictions
in 1997 (W. J. Parton, D. McGuire, P. Thorton
personal communication). Therefore, the results re-
ported here do not apply to later versions of the
models and are presented mainly as an illustration.
Our contrasts are based on the sample of 3,168
VEMAP Phase I predictions taken at 0.5° VEMAP
grid cell centers that span the conterminous US.
The sample excludes grid cells centered on water
bodies or wetlands. The VEMAP models make NPP
predictions for the potential vegetation of each grid
cell.

Field Data

Our database of productivity measurements cur-
rently includes five datasets (Table 1) (Scurlock and
others 1999). In this comparison, we used informa-
tion on total NPP in units of g C m22 y21. For the
Major Land Resource Area-State dataset (Sala and
others 1988), we converted values for aboveground
NPP provided in g dry weight m22y21 to units of g
C m22y21 by the factor 0.45 (Hall and Scurlock
1991). Many studies measured aboveground but
not belowground NPP. A smaller number of studies
measured belowground but not aboveground NPP.
For sites that lacked total NPP, we imputed (esti-
mated) total NPP based on linear relationships with
no intercept that were derived from sites with both
measurements. These relationships differed signifi-
cantly between vegetation types dominated by
grasses (Eq. [1]; n 5 17) and those dominated by
trees (Eq. [2]; n 5 29). In these equations, the

standard error on the slope estimate is shown in
parentheses.

Total NPP 5 3.02 (60.19) Aboveground NPP

Total NPP 5 1.44 (60.04) Belowground NPP

(1)

Total NPP 5 1.39 (60.07) Aboveground NPP

Total NPP 5 2.34 (60.24) Belowground NPP

(2)

We included 296 NPP measurements in our con-
trasts. Most of these field measurements repre-
sented grassland, shrubland, and forest vegetation
types. We excluded field measurements belonging
to vegetation classes indicating an agricultural land
use (for example, plantations) or wetlands because
the models did not predict NPP for these vegetation
classes.

To describe relationships between field-measured
NPP and environmental gradients, we needed a
consistent source of environmental data. For each
field site, we interpolated values of three environ-
mental variables, total annual precipitation, mean
annual temperature, and vegetation class, from a
1 3 1 km grid. We obtained orographically cor-
rected total annual precipitation from spatial data at
a resolution of 4 3 4 km. Similarly, we obtained
mean annual temperature, corrected for elevation,
from US National 1961–91 Climate Normals mea-
sured at 4761 National Climatic Data Center mete-
orological stations. We compared estimates from
the 1-km grid source to site-specific values and
found reasonable agreement. We used national
vegetation maps (Kuchler 1975) digitized to a 1-km
resolution to assign a vegetation type to measure-
ments lacking this information.

Table 1. Sources of Measured NPP Data in the US

Dataset description Sample size Reference

Sites representing various biomes for the
International Biome Program (IBP)

10 DeAngelis and others 1981

The Osnabruck collection 116 Esser and others 1997
Sites in the Superior National Forest, Minnesota 63 Hall and others 1992
OTTER transect sites in Oregon 7 Runyon and others 1994
Estimates for each Major Land Resource Area

(MLRA)-State in rangeland and grassland
100 Sala and others 1988
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Comparability of Model Predictions and
Field Data

Comparability of a collection of field data with
model predictions is a nontrivial issue in contrasts at
a regional scale. Several questions about the com-
parability of model predictions and field data
emerged in this analysis. First, do model predictions
apply to the same spatial and temporal scale as the
field measurements? The VEMAP models consid-
ered here represent dynamics at a spatial scale com-
parable to that usually measured in the field (for
example, the stand level). VEMAP I simulations
were produced from temperatures for grid cell cen-
ters and cell-averaged precipitation. Field measure-
ments were obtained at a small spatial scale.

Second, do field measurements of NPP from sites
represent potential vegetation, which is what the
VEMAP models predict? Because our approach does
not involve matching sites geographically, the fact
that a particular field site belongs to a different vege-
tation type from the VEMAP cell that it inhabits is not
an issue. However, the concern that recently dis-
turbed sites have higher productivity than more ma-
ture sites is valid. We excluded plantations and agri-
cultural sites with obviously altered disturbance
regimes and species composition. However, our data
might include field measurements of NPP for natural
vegetation on sites previously exposed to unnatural
disturbance regimes caused by fire suppression, log-
ging, or similar activities. VEMAP models calibrated
against unusually productive research sites might
share this bias (Schimel and others 1997).

Third, the field data were assigned climate esti-
mates from a different source than the VEMAP
predictions. For the field data, we associated the
best local estimates of climate available to us. For
the VEMAP predictions, we associated climate val-
ues used by the VEMAP models as input. This is the
appropriate approach for functional contrasts be-
cause geographic consistency is less important than
obtaining the best characterization of (model and

field) relationships between NPP and climate vari-
ables. The two sources of climate data are highly
correlated ($0.94).

METHODS

We used two main methods to contrast VEMAP
models with field data: (a) functional contrasts and
(b) residual contrasts. For both approaches, we used
sample weights to ensure that our results applied to
the correct regional universe, and we used an em-
pirical model to describe the relationships between
NPP and two environmental gradients. We first de-
scribe our method for assigning sample weights.
Next, we describe fitting of the empirical models
involving climate variables to both VEMAP models
and field data. Finally, we present the two con-
trasts. Because we intersperse less constructive tests
with our constructive methods, please refer to Table
2 as a roadmap for determining whether a particu-
lar method is, or is not, constructive.

Regional-Scale Model–Data Contrasts

Defining a universe of inference is no less important
in contrasting models with field data than it is in any
other scientific endeavor. The universe of inference
defines the population to which scientific results ap-
ply. Our goal was to place both the NPP field data and
the VEMAP model NPP predictions onto a common
universe. VEMAP model predictions were reported
for 0.5° grid cells covering the conterminous US that
do not fall in water bodies or wetlands. Because
VEMAP predicts NPP for potential vegetation, the
VEMAP universe is abstract. Still, it is well defined,
whereas the field samples were collected for myriad
purposes and not according to a sample design that
would facilitate making regional inferences (Figure 1).
We adopted the VEMAP sampling framework as our
universe; therefore, our results apply to areas with
potential vegetation in the conterminous US, exclud-
ing wetlands.

Table 2. Criteria for Distinguishing Constructive from Nonconstructive Methods for Contrasting Models
against Field Data

Nonconstructive Constructive

Test statistics and associated probabilities are the main
results presented.

Visual patterns and relationships are the main results
presented.

Model–data comparisons are not broken down into
meaningful groups.

Model–data comparisons are broken down into
meaningful groups to explore differences in
model–data correspondence.

Choices of field data and model settings are restricted,
and paired comparisons are used to improve power.

Choices of field data and model settings are broad to
reveal behaviors under a wide range of conditions.
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The VEMAP grid’s climatic data provided infor-
mation needed to tie our “found” NPP sample to the
regular grid sample design used for model predic-
tions. Overton (1990) and Overton and others
(1993) developed a method for combining a found
sample with a probability sample (that is, one with
a specified universe of inference and known prob-
abilities of inclusion for each measurement). Fol-
lowing this approach, we selected two poststratifi-
cation variables: mean annual temperature and
total annual precipitation. Univariate quintiles, cal-
culated from the VEMAP grid (Table 3), defined 25
climatic strata. We assigned each field measure-
ment a sample weight inversely proportional to its
probability of inclusion in a given climate stratum.
These sample weights (w) are the same for all mea-
surements falling into a climate stratum. They cor-
rect the field sample for deviations from what we
would expect to find in an equal-probability sample
of the US. We calculated the sample weights as:

w 5
% grid cells in a stratum

% field observations in a stratum
(3)

We used weighted least squares involving sample
weights to describe NPP relationships with temper-
ature and precipitation. This ensured that the esti-
mated regression relationships were unbiased with
respect to the intended universe of inference. The
weighted least-squares estimator is often employed
in linear regression using complex survey data to
counteract the bias in ordinary least squares arising

from informative sampling (Kott 1991; Korn and
Graubard 1995; Magee 1998).

Empirical Model

The Miami model form was first used as an empir-
ical description of worldwide patterns in NPP by
Lieth (1975). This empirical function serves two
purposes in our study. First, our functional con-
trasts use this empirical form to describe the rela-
tionship between NPP and environmental gradi-
ents. Second, we use the same empirical model in
our residual contrasts to generate a response surface
of NPP. This response surface, referred to hereafter
as the “field-data surface,” stands in for field mea-
surements when we compute residuals (model-pre-
dicted NPP minus field-data surface NPP). The field-
data surface makes it possible to compare imputed
data values with model predictions at all locations
where model predictions are available, regardless of
whether a location lacks field measurements or is
no longer covered by natural vegetation. It gives us
a functional way of comparing model predictions to
field data with similar climate.

We adopted the following empirical model of
mean annual temperature (T) and total annual pre-
cipitation (P):

NPPT 5
Nmax

1 1 eY~T! (4)

NPPp 5 Nmax~1 2 eY~P!! (5)

Figure 1. Map of the conter-
minous US showing locations
of NPP measurements used
as part of our field data and
overlain by the VEMAP grid.
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NPP 5 min~NPPT, NPPP! (6)

We adopted the Miami model form for three
reasons. First, the Miami form assumes that one
environmental factor, the “limiting factor,” controls
productivity. When temperature is low, tempera-
ture limits production and when precipitation is
low, precipitation controls the rate of production.
The Miami model takes the minimum of two NPP
estimates: NPPT is a nonlinear function of mean
annual temperature and NPPP is a nonlinear rela-
tionship with total annual precipitation.

Second, the asymptotic form of the Miami, which
reaches a maximum NPP, Nmax at high values of
precipitation and temperature, is more appropriate
than a linear model over a wide range of tempera-
ture and precipitation. Others have found a linear
relationship between NPP and precipitation within
particular regions or vegetation types (for example,
Sala and others 1988). Our field data span a wider
range of climatic conditions, although the relation-
ships of subsets of data limited by one factor did not
deviate much from linear.

Third, the Miami form gave better predictions of
field NPP than alternative models that we consid-
ered. It explained 46% of variation, with much
better predictions at precipitation-limited sites
(.90%) than at temperature-limited sites. The
Montreal model form (Lieth 1975), which describes
NPP as a function of actual evapotranspiration
(AET), explained 32% of the variation in field NPP
when we used an average of VEMAP estimates of
AET. The Montreal model form explained only
18% of variation in field NPP when we used AET
from Ahn and Tateishi (1994).

Functional Contrasts

In our first analysis, we contrasted the relationship
between NPP predicted by the VEMAP models and

environmental variables with the relationship be-
tween field NPP and environmental variables. We
used both formal tests (indicator analyses) and vi-
sual comparisons (residual analyses). Indicator
analysis is a deductive method for testing the null
hypothesis that the VEMAP models and field data
share the same environmental relationships. Resid-
ual analysis is an inductive method that visually
compares model and field relationships to find pat-
terns in discrepancies. This latter is an example of a
constructive contrast—one that identifies how the
model (or data measurement) might be improved,
rather than merely attempting to falsify the model.

Indicator analysis. Linear regression with an indi-
cator or dummy variable (indicator analysis) allows
different parameters to be estimated for different
groups (Draper and Smith 1981). In our analysis,
the indicator variable, Iv, refers to either the
VEMAP observations or the field data Eq. (7).

Iv 5 H 1, when VEMAP
0, when field data (7)

We can formally test the hypothesis that models
and data share the same environmental relation-
ships by comparing slopes of a linear regression
model that includes Iv.

Y~T! 5 a01a1Iv1a2T1a3(Iv*T) (8)

Y~P! 5 b2P1b3(Iv*P) (9)

By substituting for Iv, the indicator model above
reduces to the following models for field and
VEMAP-predicted NPP:

Field Y~T! 5 a01a2T (10)

Field Y~P! 5 b2P (11)

VEMAP Y~T! 5 ~a01a1)1(a21a3)T (12)

Table 3. Sample Weights in Each of the 25 Temperature and Precipitation Strata Formed by Quintiles of
the Grid Population

Temperature quintile (°C)

,5 5–7.1 7.1–9.9 9.9–14.2 .14.2

P
re

ci
p

it
at

io
n

q
u

in
ti

le

,403 44.0 11.5 10.4 9.9 5.6
403–571 33.2 11.8 7.8 11.3 5.0
571–889 2.32 19.0 15.0 8.0 4.9
889–1183 38.0 — 53.5 7.4 9.8
.1183 2.75 — 4.1 2.8 20.6

Combinations lacking field data are indicated by dashes.

Regional Climate Responses 401



VEMAP Y~P! 5 ~b21b3)P (13)

The technique of regression with an indicator
variable requires balance in sample sizes between
the field data and VEMAP predictions. To address
this, we divide the VEMAP predictions of NPP ran-
domly into 11 subsets, with each subset having
roughly the same sample size as the field data. This
ensures that the degrees of freedom correctly reflect
the ability to test for significant differences between
model- and field-based parameter estimates.

We use the following procedure to estimate pa-
rameter values: First, we split the field data into two
parts, one limited by temperature and one limited
by precipitation. Because the data must be split
prior to estimating the parameter values, we use the
parameter values originally estimated by Lieth
(1975) to determine, for each observation (field or
model), whether the temperature or precipitation
estimate of NPP would be lower. Next, we adopt
Lieth’s value of maximum NPP, Nmax 5 1350 g C
m22y21. Finally, we linearize the equations by ap-
plying the appropriate logit transformation (Atkin-
son 1985) to NPP (Eqs. [14] and [15]). This allows
us to use linear regression to estimate the remain-
ing parameters (as, bs). We estimate parameters for
Eq. (14) from the subset of data limited by temper-
ature and for Eq. (15) from the subset of data lim-
ited by precipitation.

Logit(NPPT) 5

loge~Nmax–NPPT!–loge~NPPT! 5 Y~T! (14)

Logit(NPPP) 5 loge~Nmax–NPPP!–loge~Nmax! 5 Y~P!

(15)

If the VEMAP model relationship between NPP
and temperature differs from that observed in the
field, then a1 and a3 should be significantly differ-
ent from zero. Likewise, an estimate of b3 signifi-
cantly different from zero would indicate that the
VEMAP model relationship with precipitation dif-
fers from that observed in the field data.

We present three kinds of information to com-
pare the relationships. First, we present tests for
significant differences between model and field re-
gression coefficients. We report the average proba-
bility of rejecting a two-sided t-test of a1 5 0, a3 5
0, and b3 5 0 over the 11 replicate subsets of
VEMAP predictions. Second, we compare the
curves estimated for each model and for the field
data. This comparison shows how differences in
parameter values can translate into differences in
NPP that might not be apparent from looking at the
parameter estimates themselves—it allows us to as-

sess ecological, in addition to statistical, signifi-
cance. Third, we graph the VEMAP NPP predictions
along with the 75% and 95% prediction intervals
from the field data relationships. Typically, these
prediction intervals are used to indicate the degree
of uncertainty associated with predictions at a par-
ticular value of x. Here, we wish to illustrate the
variability in the field data around the field-data
surface without confusing the graphs with too
many overlaid points. The prediction intervals serve
as reasonable reference lines: the 75% prediction
interval encompasses 80% of the field data points,
and the 95% prediction interval encompasses 94%
of the field data.

Residual Contrasts

Our second approach seeks to uncover patterns in
residuals to elucidate model–data discrepancies.
The purpose of this analysis is to identify climatic
conditions leading to better and worse agreement
between model-predicted and measured NPP that
can help to guide future research. A two-step pro-
cess is required for this: (a) form residuals based on
the field-data surface, and (b) compare model re-
siduals with data residuals using covariates to help
reveal structure in discrepancies.

Because we do not have paired comparisons be-
tween field measurements and model predictions,
we need a way to compare field data with appro-
priate model predictions. Rather than use spatial
proximity as the basis for matching points, we sub-
stitute a conditional expectation for the field NPP,
given that the temperature and precipitation at
each VEMAP grid point is known. In other words,
we use our field-data surface to predict NPP based
on temperature and precipitation provided with
each of the VEMAP grid points. The field-data sur-
face serves as a reference. The residuals obtained in
this first step are differences between each VEMAP
model prediction of NPP and the NPP estimated
from climate by using the field-data surface.

In the second step, we compare VEMAP residuals
with residuals of the field data from the field-data
surface. We obtain field-data residuals by subtract-
ing NPP estimated from climate by using the field-
data surface from field NPP. Residual contrasts are
comparisons between the patterns of residual ob-
served in the VEMAP model predictions with those
in the field data. From a deductive point of view,
this comparison indicates whether deviations of
VEMAP predictions from the field–data surface are
significant in light of uncertainty in the field–data
relationship. From a constructive point of view, any
differences between model and data residuals are of
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potential interest. For example, smaller deviations
in model than data might also provide insights.

First, we summarize residuals to test the overall
ability of the field-data surface to predict VEMAP
model results. This preliminary residual analysis
evaluates overall fit. We evaluated the distribution
of residuals, ei for (a) bias (nonzero mean error) and
(b) accuracy (nonzero mean absolute error).

mean error 5
1

n O
i51

n

ei (16)

mean absolute error 5
1

n O
i51

n

ueiu (17)

This analysis, by itself, is not likely to be particu-
larly constructive because it does not provide infor-
mation about when agreement is good and when it
is poor. Therefore, our next analysis looks for pat-
terns in the residuals that uncover the reasons for
model–data discrepancies. To illustrate this ap-
proach, we organize the residuals by vegetation
classes. It is conceivable that different parameter-
izations of the VEMAP models or different sampling
methodologies in different vegetation classes could
lead to model–field data differences. For each
group, we compare the distribution of VEMAP
model residuals with the distribution of field-data
residuals.

Finally, we map the residuals to evaluate geo-
graphic patterns of fit between the VEMAP models
and the field-data surface. The residuals are differ-
ences between each VEMAP model prediction of
NPP and the NPP obtained using the field-data sur-
face.

RESULTS

Regional-Scale Model–Data Contrasts

The frequency counts of VEMAP grid points in en-
vironmental space showed that mean annual tem-
perature and total annual precipitation were corre-
lated in their spatial occurrence. Grid cells with high
temperature and high precipitation were relatively
common (Figure 2A), whereas those with low tem-
perature and high precipitation or high tempera-
ture and low precipitation were rare. Combinations
with low temperature or low precipitation were
uncommon in the field data, while one combina-
tion that includes a number of measurements from
the Superior National Forest stood out as being
overrepresented (Figure 2B), prior to weighting.
The sample weights are listed in Table 3. The

weighted cumulative frequency distributions of
temperature and precipitation (Figure 3) illustrate
the improvement gained in representing US climate
by applying sample weights. The weighted distribu-
tions of temperature and precipitation are closer to
those of the VEMAP grid than are the unweighted
distributions.

Functional Contrasts

The field data showed significant positive relation-
ships between NPP and both temperature and pre-
cipitation (Figure 4). The Miami form of empirical
model is visually consistent with the distribution of
field data along the two gradients.

The results of our indicator regression showed
differences in environmental relationships between
the VEMAP Phase I model predictions and field
measurements. Although we detected statistically
significant differences (P , 0.01) in the NPP vs
precipitation relationships for all three VEMAP
models (Table 4), visual inspection suggests that the
relationship between TEM’s NPP and precipitation

Figure 2. Frequencies of (A) grid cells and (B) field ob-
servations in each climate stratum defined by univariate
quintiles of the temperature and precipitation distribu-
tions of VEMAP grid cells.
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(Figure 5) is consistent with that of field measure-
ments (Figure 4). The indicator test focuses on its
certainty that the true coefficients of precipitation
differ. The ecological relevance of the test is limited
because it does not account for the considerable
variation in NPP estimates. In essence, this describes
the distinction between a confidence and prediction
interval, where the latter has higher ecological rel-
evance but is more difficult to summarize by a test.

The NPP–precipitation relationship produced by
the BIOME-BGC and CENTURY models differed
qualitatively from the field-data relationship (the
heavy lines in Figures 6 and 7 show the empirical
model fit to VEMAP predictions). For BIOME-BGC,
the precipitation response of NPP is concave up-
ward rather than convex (Figure 6). We observed a
sharp increase in predicted NPP for sites with total
annual precipitation higher than 800 mm/y that we
did not see in the field data (Figure 4).

For CENTURY, the qualitative differences were
subtler (Figure 7). The field data showed a random

pattern surrounding the precipitation component of
the field-data surface (Figure 4). In contrast, most
CENTURY predictions seemed to follow a small
number of curves, with very little variation sur-
rounding each curve. Although the CENTURY
model predictions generally fell within the bounds
defined by the field data (Figure 7), the patterns
shown by CENTURY model predictions seemed to
represent at least two distinct functional responses
to precipitation. One of these, a steeply inclining
curve in response to precipitation, deviated signifi-
cantly from the overall shape and magnitude of
response followed by the field data. Upon further
examination, it appeared that this response was
typical of CENTURY model predictions for savanna
grid cells (Figure 7A). Given the variation in the
field data illustrated by the prediction intervals in
Figure 5, the climatic relationships predicted by the

Figure 3. Comparison of the VEMAP grid distributions
with weighted and unweighted field-sample distributions
of (A) average annual temperature and (B) total annual
precipitation.

Figure 4. Field NPP measurements and their relationship
with (A) total annual precipitation and (B) mean annual
temperature. Three lines indicate the fitted empirical
models (solid), the 75% prediction interval (dashed lines
encompass 80% of the field data), and the 95% predic-
tion interval (dotted lines encompass 94% of the field
data). Each graph contains only the field data limited by
the factor plotted on the x-axis. The size of each symbol
reflects the sample weight.
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TEM model compared very well with those of the
field data. In addition, TEM and the field data
showed similar patterns of residual variation (Fig-
ures 4 and 5).

The CENTURY model response to temperature
was weaker than that indicated by the field data
(Figure 7). The significant interaction between the
intercept parameter and Iv in Table 4 (average P 5
0.0049) revealed a significant difference in the
NPP–temperature relationship between the CEN-
TURY model predictions and the field-data surface.
We did not detect significant differences between
temperature relationships of TEM or BIOME-BGC
NPP predictions and that of the field-data surface
NPP (Table 4).

Residual Contrasts

The average bias of each VEMAP model, the
mean difference between VEMAP NPP and field-
data surface NPP Eq. (16), was significantly dif-
ferent from the average bias of the field data (P ,
0.01) (Table 5). Although the mean absolute er-
rors were significantly different from zero for all
VEMAP models, only the BIOME-BGC model had
a significantly higher mean absolute error than
the field data. The distribution of residuals illus-
trates that NPP predictions from the TEM model
showed the best agreement with the field-data
surface, but they were also less variable than the
field data (Figure 8). The BIOME-BGC model pre-
dictions were unbiased relative to the field-data

surface, but they deviated from the field-data
surface more than the other VEMAP models or
the field data (Figure 8). BIOME-BGC model pre-
dictions showed higher variability than did the
field data. Because climatic variables driving the
VEMAP models are averages for a grid cell, we
would expect variation in VEMAP model NPP
predictions to be lower than that observed. How-
ever, this is probably compensated for by numer-
ous factors that influence individual sites but that
are not represented in the VEMAP models.

Residuals structured by vegetation class. We contin-
ued with a structured residual analysis to identify
patterns that might provide modelers and field ecol-
ogists with more information on where the largest
discrepancies occurred. Table 6 lists the sample sizes
associated with each vegetation type, both for the
VEMAP grid and for the field data. The TEM model
exhibited the smallest bias and absolute error (Fig-
ure 9). CENTURY predictions deviated most from
the field-data surface in broadleaf forest, where
they tended to be high. On average, BIOME-BGC
predictions were high in forest classes, with a num-
ber of very high NPP predictions.

Residuals structured geographically. Maps of resid-
uals showed distinct geographic patterns. In gen-
eral, when predictions by the VEMAP models
differed from the field-data surface, they tended
to predict lower NPP than indicated by the field-
data surface in western regions of the US and
higher NPP than indicated by the field-data sur-

Table 4. Parameter Estimates for an Indicator Regression Model that Compares the Relationship of
VEMAP NPP Predictions to Climatic Variables with Those of Field NPP Measurements

Field
data

Phase I VEMAP model

BIOME-
BGC CENTURY TEM

Limiting
environmental
factor

Precipitation Sample
size

166 2160 2267 2267

Coefficient –0.0007 –0.0004 0.00009 0.00007
P . uTu ,0.0001 ,0.0001 0.0046 0.0013
Sample
sizea

128 878 901 901

Intercept 1.5959 –0.4179 –0.6699 0.0905
Temperature P . uTu ,0.0001 0.1358 0.0049 0.4943

Coefficient –0.1353 –0.0487 0.0476 –0.0364
P . uTu ,0.0001 0.1915 0.1350 0.2582

Three parameter estimates are listed: (a) the intercept of the temperature model (the Iv term in Eq. [8]), (b) the temperature coefficient (the Iv*T term in Eq. [8]), and (c) the
precipitation coefficient (the Iv*P term in Eq. [9]). Probabilities (P . uTu) test for a parameter that is significantly different from zero, indicating that the model and field data
have different relationships.
aWe excluded 23 temperature-limited BIOME-BGC predictions, two temperature-limited field measurements, and seven precipitation-limited BIOME-BGC predictions because
they exceeded the maximum NPP value of 1350 g C/m2/y used by the logit transform.
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face in the northeastern and upper Midwest re-
gions (Figure 10B–D). In the highly productive
Pacific Northwest region and in northern Idaho,
two VEMAP models estimated higher NPP than
the field-data surface (Figure 10C and D, respec-
tively). The BIOME-BGC model showed a striking
pattern of predicting lower NPP than indicated by
the field-data surface in most of the West and
predicting higher NPP than indicated by the field-
data surface in the eastern US relative to the
field-data surface (Figure 10D). CENTURY model
NPP compared well with the field-data NPP sur-
face in the eastern US (Figure 10C). CENTURY
predictions were generally lower than the field-
data surface in the West, higher in the Midwest,
and close to the surface in the Northeast. Of the
three VEMAP models, the TEM model compared
most favorably with NPP field-data surface (Fig-
ure 10B).

DISCUSSION

Constructive Feedback

The main objective of constructive contrasting is to
generate feedback that can be used to reduce model
uncertainty through future data collection, experi-
mentation, or model refinement. In this example,
model–data contrasts suggested that the BIOME-
BGC model predictions produced an exaggerated
response to high precipitation. This exaggerated re-
sponse was most clear in the graph showing a
strong increase in predicted NPP along a precipita-
tion gradient (Figure 6). It is also a likely explana-
tion for the strong east–west geographic pattern
that we observed in the residuals. Schimel and oth-
ers (1997) also noted that the BIOME-BGC model
produced substantial overestimates at the two wet-
test sites in their comparison with sites along the

Figure 5. TEM model NPP predictions and their relation-
ship with (A) total annual precipitation and (B) mean
annual temperature. Three lines indicate the fitted em-
pirical models Eqs. (10) and (11) (solid), the 75%
(dashed), and the 95% (dotted) prediction interval. The
heavy line follows Eqs. (12) and (13) fitted to TEM NPP
predictions. Each graph contains only the grid points
limited by the factor plotted on the x-axis.

Figure 6. BIOME-BGC model NPP predictions and their
relationship with (A) total annual precipitation and (B)
mean annual temperature. Three lines indicate the fitted
empirical models Eqs. (10) and (11) (solid), the 75%
(dashed), and the 95% (dotted) prediction interval. The
heavy line follows Eqs. (12) and (13) fitted to BIOME-
BGC NPP predictions. Each graph contains only the
VEMAP grid points limited by the factor plotted on the
x-axis. Predictions for mixed forest are indicated in (A) by
open triangles.
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OTTER transect. We observed that the highest pre-
dictions of BIOME-BGC occurred in forest vegeta-
tion. NPP predictions in grassland, shrubland, and
savanna fell below the field-data surface, perhaps
because of limitation of NPP by precipitation in the
BIOME-BGC NPP model.

The CENTURY model results highlighted the con-
structive nature of the visual residual contrasts.
Overall, the CENTURY model’s NPP predictions fell
within statistical bounds set by the field data—so, in
a sense, the model predictions meet quality assur-
ance specifications that might be defined by an
engineer. Yet, visual inspection of the predicted
relationship of NPP with precipitation revealed that
the CENTURY model predictions were following a
different relationship than the field observations
(Figure 7). The CENTURY model seemed to predict
an overresponse to precipitation in savanna and dry

woodlands. We did not observe this relationship in
field measurements from savanna or dry wood-
lands, but there were only three observations. This
information suggests that NPP field estimates are
needed in savanna and dry woodlands to determine
whether the model’s response mimics nature or
whether it is an artifact of the CENTURY model. We
also observed more subtle differences caused by a
lack of response of NPP to temperature in temper-
ature-limited sites. CENTURY model NPP predic-
tions in very cold regions and in coniferous forests
were higher than that observed in the field.

The overall comparison between TEM predictions
and field data revealed remarkable agreement. In
fact, our contrasts of the TEM model with field data
failed to identify differences that could potentially
lead to model revision or guidance for future field
studies. We observed that TEM model predictions of
NPP in northeastern broadleaf forests were higher
than NPP observed in the field data, and those for
grasslands tended to be lower. Given the uncertain-
ties in the field data, the differences reported here
were neither large enough nor certain enough to
suggest modifications to the model. However, re-
peating this analysis with additional data for
broadleaf forests (for example, from the US Forest
Service’s Forest Inventory and Analysis measure-
ments) could help to interpret these differences.

Constructive Contrasts vs Formal Tests

In this study, we found that descriptive contrasts
were more useful in providing constructive feed-
back than formal, deductive contrasts (that is, those
focused on testing the hypothesis that models do
not differ from field data). Statistical measures of
goodness-of-fit (for example, P values in Tables 4
and 5) were not very useful in describing the po-
tential for model improvement. These tests stopped
at simple statements about model performance
rather than providing meaningful feedback to the
scientific process.

Constructive methods gave us a much better pic-
ture of how far the three models were from the field
data, and, more importantly, why. In addition, con-
structive methods overcame one theoretical prob-
lem often attributed to model validation. Deductive
tests never fail when evaluating models that gener-
ate highly variable model predictions, whereas con-
structive methods focus on outliers when they ap-
pear in a model and not in the data. Extreme
predictions become a focus of constructive contrasts
rather than a statistical smokescreen. This is not to
say that deductive tests serve no useful purpose.
The scientific community tends to be suspicious of
constructive contrasts when conducted by modelers

Figure 7. CENTURY model NPP predictions and their
relationship with (A) total annual precipitation and (B)
mean annual temperature. Three lines indicate the fitted
empirical models Eqs. (10) and (11) (solid), the 75%
(dashed), and the 95% (dotted) prediction interval. The
heavy line follows Eqs. (12) and (13) fitted to CENTURY
NPP predictions. Each graph contains only the grid points
limited by the factor plotted on the x-axis. Predictions for
savanna or dry woodlands are indicated by open triangles
in (A).
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as a means of establishing the validity of their own
models. In this situation, a formal test appears more
objective because it is less amenable to selective
presentation.

When the goal of a model–data contrast is to
reveal differences between model predictions and
field data, the tools needed shift from those geared
toward hypothesis testing to more creative and ex-
ploratory pattern-seeking methods (Romesburg
1981). Loehle (1997) gives the example of corrob-
orating a predator–prey model by comparing its
qualitative behavior to that observed in the field.
He contrasts the creative solution, looking for the
“donut shape” in predator–prey trajectories, with
differencing of paired trajectories over time. By
analogy, we contrasted model responses to envi-
ronmental gradients with those observed in nature.
A model might not show regional patterns of re-
sponse that are observed in field data, or they might
show patterns that are stronger than observed in

the natural situations, where numerous other con-
founding and competing forces act (Kareiva 1990).

Regional-Scale Model–Data Contrasts

The methods used here are particularly well suited
to regional-scale comparisons. Two scaling issues
that arise when comparing models and data at the
regional scale are: (a) unbiased representation of
regional patterns (spatial extent) and (b) equivalent
spatial support (spatial grain). We achieved unbi-
ased representation by applying principles of sam-
pling design. We defined a region of inference and
assigned sample weights to ensure that the influ-
ence carried by individual field measurements was
proportional to their representation of the specified
region. Fortunately, our model predictions were
drawn from a regular spatial sample, but model
predictions can also be weighted if need be. Other
poststratification factors, besides the two climate
variables considered here, might be important. For
example, Schimel and others (1997) suggested that
regional patterns of disturbance create a great deal
of spatial variation in NPP not accounted for in
regional extrapolations of VEMAP model predic-
tions. A logical next step would be to focus on
disturbance history in a future contrast.

We did not specifically address the effects that
different areas of spatial support might have on our
results. In general, it is best to preserve spatial vari-
ation by making local model predictions at the same
scale as the field measurements. However, if local
NPP model predictions are aggregated to represent
somewhat larger areas (for example, the half-de-
gree cells in this case), then the increased spatial
support of the estimates should merely reduce the
variability of the estimates (Griffith 1988; Jager and
others 1990). Our intuition is that functional con-
trasts should be relatively robust to such scale dif-
ferences. On the other hand, coarser-scale predic-
tions from nonlinear models that are obtained by

Figure 8. The distribution of residuals (model NPP–field-
data surface NPP) is shown for each of the three VEMAP
models and for the field data. Box whisker diagrams
enclose the 25th and 75th percentiles within the distri-
bution of residuals.

Table 5. Overall Goodness-of-fit Comparison between Three Productivity Models and the Field-data
Surface Fitted to NPP Measurements

VEMAP
model

Sample
size

Residual error Absolute error

Mean (standard
error)

Mean (standard
error)

Field data 296 –6.8 (11.03) 136.7 (7.64)
BIOME-BGC 3168 45.1 (5.21) 240.7 (3.08)
CENTURY 3168 –41.7 (3.01) 145.5 (1.71)
TEM 3168 –32.6 (2.20) 105.2 (1.30)

Field data results are provided as a reference.

408 H. I. Jager and others



spatially averaging model inputs might be biased
(King and others 1991; Rastetter and others 1992;
Schimel and others 1997), potentially introducing
discrepancies with the field data.

A strong practical advantage of these methods is
that they do not require paired or colocated samples
and model predictions. Substituting the empirical
model adds robustness by removing the geographic
context of the comparison and placing it in an ab-
stract climatic space. By focusing on relationships
between NPP and climate, we avoided the inevita-
ble problems with inconsistent data sources and
locational errors that arise in real-world applica-
tions.
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