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ABSTRACT: A dendrone is a hierarchical thresholding structure that
can be automatically generated from a complex image. The dendrone
structure captures the connectedness of objects and subobjects
during successive brightness thresholding. Based on connectedness
and changes in intensity contours, dendronic representations of ob-
jects in images capture the coarse-to-fine unfolding of finer and finer
detail, creating a unique signature for target objects that is invariant to
lighting, scale, and placement of the object within the image. Sub-
dendrones within the hierarchy are recognizable as objects within the
picture. Complex composite images can be autonomously analyzed
to determine if they contain the unique dendronic signatures of par-
ticular target objects of interest. In this paper, we describe the initial
design of the dendronic image characterization environment (DICE)
for the generation of dendronic signatures from complex multiband
remote imagery. By comparing subdendrones within an image to
dendronic signatures of target objects of interest, DICE can be used
to match/retrieve target features from a library of composite images.
The DICE framework can organize and support a number of alterna-
tive object recognition and comparison techniques, depending on the
application domain. © 2001 John Wiley & Sons, Inc. Int J Imaging Syst
Technol, 11, 243–253, 2000

I. INTRODUCTION
Images are being generated at an increasing rate by defense and
civilian satellites, military reconnaissance, and biomedical imaging
(Gudivada and Raghavan, 1995). New image analysis and retrieval
techniques are required to effectively extract and use information
from these images. Previous approaches to image analysis and
content-based retrieval have mainly taken two directions. The first
approach, which models image contents as a set of attributes ex-
tracted manually and managed within conventional database man-
agement systems, entails a high level of image abstraction. For
example, the Chabot system (Ogle and Stonebraker, 1995) devel-
oped at University of California Berkeley uses a relational database
to store text information that describes attributes of images (photos),
which are searched when a user enters a query. The attributes
include abstract, title, comments, copyright information, location
where the photo is taken, and date when the photo is taken.

The second approach uses an integrated feature-extraction/ob-
ject-recognition subsystem to overcome the limitations of attribute-
based retrieval. However, this approach is often computationally
expensive, difficult, and domain specific. One example of this ap-
proach is the QBIC (query by image content) system (Flickner et al.,
1995), which was developed at IBM Almaden Research Center. It
allows queries on large image and video databases based on example
images, user-constructed sketches and drawings, selected color and
texture patterns, camera and object motion, and other graphical
information.

This paper discusses a new technique for image analysis and
retrieval based on dendronic image signatures. A dendrone, as
described in Hanusse and Guillataud (1990, 1992), is a hierarchical
thresholding structure that can be automatically generated from a
complex image. Based on changes in intensity contours, dendronic
representations of objects in images capture the coarse-to-fine un-
folding of finer and finer detail. This creates a unique signature for
target objects that is invariant to lighting, scale, and placement of the
object within the image. Subdendrones within the hierarchy are
recognizable as objects within the picture. Complex composite im-
ages can then be autonomously analyzed to determine if they contain
the unique dendronic signatures of particular target objects of inter-
est. Although the dendrone itself does not impose external restric-
tions to the image, certain attributes could be incorporated into the
dendrone. For example, text information describing the image could
be added to the dendrone to facilitate content-based retrieval. Dif-
ferent feature description attributes could also be computed and
stored in the dendrone for shape-based object retrieval.

A recent implementation of dendrones called DICE (dendronic
image characterization environment) is described in this paper.
DICE provides an integrated tool for image feature extraction and
object retrieval based on dendronic image signatures. In particular,
DICE can be used to create overlays containing skeletons of iden-
tified objects of interest within the image, created from image data
associated with the nodes in the subdendrones. Using an object-
oriented (C11) software design and implementation, DICE dem-
onstrates the utility of the dendronic signature for like-feature de-
tection across multiple images (perhaps stored in large digital librar-
ies).

As a visual introduction to the concept of dendrones, Figure 1
illustrates the dendronic tree representation (Fig. 1b) of a black-and-
white image of an orbiting satellite (Fig. 1a). Even without knowing
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how the dendronic tree representation is obtained, an observer can
see from the dendronic signature (Fig. 1b) that the image contains
three primary objects on a noisy background.

The remaining sections discuss the theory, implementation, and
evaluation of dendronic image characterization. Section II reviews
the underlying concepts of dendrones and discusses the algorithms
for dendrone construction and subdendrone matching. Section III is
a description of the design and implementation of the DICE software
environment including a demonstration of how text (metadata) can
be integrated into dendronic data structures for future text/image
search retrieval. Section IV examines the efficiency of dendrone
construction and effectiveness of subdendrone matching and Section
V summarizes the overall effectiveness of dendronic image charac-
terization.

II. DENDRONE DATA STRUCTURE AND ALGORITHMS
An image may be considered as a two-dimensional (2D) intensity
field. In addition, if the intensity values of each pixel in the image
are considered as elevations, an image can be viewed as a 3D
intensity terrain. The brighter the pixel, the higher the elevation.

Brighter pixels form mountains, with the brightest pixel as the peak.
Darker pixels form valleys, with the darkest pixel as the bottom.
However, the imaginary terrain differs from real-world geographical
terrain; the imaginary terrain is solid, which means it has no sub-
surface features such as holes or caves.

Given an image, a unique dendrone structure can be constructed
from the imaginary 3D terrain. The dendrone structure captures the
connectedness of objects and subobjects during successive brightness
thresholding. The construction process can be visualized as if the terrain
is flooded with water and then slowly drained. Initially, the water level
is high enough so that land is not visible above the water level. As the
water level decreases, mountains associated with the higher elevations
appear first, then plains, and finally valleys. At any particular water
(intensity) level, the image is segmented into islands (objects). When
the water (intensity) level decreases, three kinds of events occur: (1)
new isolated islands (objects) appear above the water level; (2) existing
islands (objects) grow; and (3) multiple islands (objects) merge or
coalesce to form larger islands (objects).

Figure 2 is an artificially generated gray-scale image containing
three objects and Figure 3 illustrates the 3D intensity terrain. In the
original image, the brightest intensity value is 255 and the darkest
intensity value is 0. Accordingly, in the imaginary 3D intensity
terrain, the highest elevation is 255 and the lowest elevation is 0.
Figure 4 illustrates the tree-like dendrogram corresponding to the
dendrone generated from Figure 2. Figure 4 illustrates one way to
draw the dendrone graphically. In this case, the dendrone is gener-
ated with the intensity level decreasing at an intensity resolution
increment (stride value) of 30. The smaller the stride value, the more
detailed the dendrone is in terms of the number and size of subtrees.

There are three distinct subdendrones within the dendrone (Fig.
4) that correspond to the three distinct objects in Figure 2. In this
dendrogram, the horizontal axis is arbitrary and the vertical axis
indicates the intensity value from 0 to 255. Each vertical line of the
dendrogram corresponds to one object within the image. The length
of the line indicates the intensity of the object. Each horizontal line
connects one vertical line above with several vertical lines below.
The object1 represented by the vertical line above the horizontal line
is formed by the objects (the subobjects or child objects) represented

1 Actually the parent object identified by the number above the horizontal line.Figure 2. Image showing three objects.

Figure 1. Black and white satel-
lite image (a) with dendronic sig-
nature (b). Image Courtesy of the
USAF Phillip’s Laboratory’s Satel-
lite Control and Simulation Divi-
sion.
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by the vertical lines beneath the horizontal line. The position of the
horizontal lines indicates the intensity level at which the image
becomes segmented.

The intensity level decreases from 255 to 0 at a specified stride
value. When the intensity level reaches 0, the entire image forms one
object, which is represented by the root or the trunk of the dendrone.
Despite the flooding/draining allegory, the dendrogram cannot be
drawn or constructed until all of the water has been drained and the
sequential thresholding is complete. Until then, it is not known
where on the arbitrary horizontal axis the vertical lines should be
drawn so that they can be connected properly. It is the connectedness
as the dendrone tree from root to leaves is traversed that contains
information about the relationships between objects.

Figure 5 shows both images and dendrograms generated from the
original image in Figure 2 when the water level is three different
values. Figure 5(a) shows that when the water level starts at 255,
three separate objects begin to appear. Correspondingly, Figure 5(b)
shows the three vertical lines that represent these three objects.
Because they are distinct objects, the three vertical lines have no
connections among them. As the water level decreases to 165, two
of the three objects grow larger (Figure 5c) as more components
appear. The larger objects are represented by the vertical lines
identified by integers 6 and 10 (Fig. 5d). They link their correspond-
ing subobjects together by the horizontal lines whosey-coordinate
positions are 165. The size of the other object does not increase at
this intensity threshold. Figure 5(e) shows that when the water level
is 135, which is below the elevation of a connected portion shared
by two of the three objects, these two objects merge and form a
larger object, which is identified by the integer 5 in the dendrogram
in Figure 5(f). At this water level, the third object also grows and
becomes a larger object, which is identified by integer 28 in the
dendrogram. In real-world (more complex) images, the segmenta-

Figure 3. Imaginary three-dimensional intensity terrain generated
from the image in Figure 2.

Figure 4. Dendrogram of the image in Figure 2.

Figure 5. Image showing three separate objects appearing when
the water level is 255 (a) and its sub-dendrogram (b); the growth of
two of the three objects (at water level 165) is illustrated in (c) with
corresponding sub-dendrogram (d); merging of two objects at water
level 135 is shown in (e) along with the sub-dendrogram in (f).
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tion and merging processes are much more complicated. The three
events described above may simultaneously occur and may involve
more than two objects.

A. Dendrone Properties. Dendrones generated from images are
invariant to scaling. The information stored in the nodes in the
dendrones may be different, but the overall structure of the dendrone
does not change. Dendrones are also invariant to rotation in terms of
connectedness (although they may not necessarily be depicted iden-
tically). The relationships among child and parent objects will not
change although the order of objects within the dendrones may be
different. Figure 6 illustrates an enlarged and rotated version of the
image in Figure 2. The dendrogram generated from this image is
exactly the same as the dendrogram shown in Figure 4. Dendrones
are invariant (from a connectedness standpoint) to the placement of
objects within the image and to intensity changes as long as the
relative intensity relationships among the objects remain the same.

The dendrone data structure provides a useful and powerful
computational framework for image analysis and visual information
retrieval. Each node (branching point) of the dendrone can be used
to store ancillary information such as the position of the object
within the image, the size of the object, its eccentricity, axis orien-
tation, and information that is directly available from the image itself
(e.g., the intensity values of the pixels).

If the dendrone stores information about objects (Section IIIA)
such as pixel coordinates and intensity values, the original image can
be reconstructed from the dendrone. Furthermore, one can detect
individual objects from the image by extracting subdendrones from
the dendrone. As demonstrated in Section IV, dendrones can be used
to detect objects with similar shape and/or similar brightness topol-
ogy from multiple images.

B. Algorithms. The construction of dendrones involves segment-
ing the image into isolated objects and building the tree structure
from these objects. The matching of dendrones is much more com-
plicated. In developing DICE, our primary intent was to match
dendrones representing objects with similar shape and/or brightness

topology from multiple images. Although the structure of the den-
drone is generally sufficient to match objects with similar brightness
topology, matching objects with similar shape is more difficult. The
development of algorithms in image analysis for shape matching
constitutes a major research effort in computer vision. The initial
prototype of DICE (Section III) uses a simple but effective distance-
to-centroid (Rauber, 1994) signature matching algorithm. However,
the object-oriented design of DICE facilitates other possible match-
ing algorithms (see Section III).

Construction.The construction of dendrones is accomplished by
thresholding the image in a repetitive fashion. At one particular
threshold intensity level, the image is processed in two stages: image
segmentation and object merging.

The pixel labeling (or connected components) algorithm pre-
sented in Jain (1989) is used for segmenting a (thresholded) image
into isolated objects. The image is scanned from left to right and
then from top to bottom and the current pixel is labeled according to
its intensity value. For example, consider the collection of five pixels

S A B C
D X D ,

where the current pixel isX. The pixels above and to left of the
current pixel have already been labeled if they are within the current
threshold range. If the intensity value of the current pixel is within
the current threshold range, pixelsA, B, C, andD are examined.
One of the following situations can occur:

1. None of these pixels are labeled; pixelX is assigned a new
label. A new object is created with one pixelX in it.

2. One of the pixels (A throughD) is labeled andX inherits
that label. For example, ifC is the only pixel that has been
labeled,C’s label is assigned toX and pixelX is added to the
object with that label.

3. There are two or more qualified labels; these labels are
declared to be the same and updated with a new label, which
is assigned toX. The objects associated with these labels are
merged to become a new object (with the new label) and
pixel X is added to the new object.

Other possible image segmentation algorithms include connec-
tivity filling (Pavlidis, 1982), amplitude thresholding or window
slicing (Jain, 1989), and run-length connectivity analysis (Jain,
1989). More details on the performance of the pixel labeling algo-
rithm are presented in Chen (1998).

After all pixels have been scanned, the image is segmented into
isolated objects, each with a distinct label. An object merging
algorithm is then used to compare each object generated from the
current segmentation process with any object generated at the last
intensity threshold. If two objects (islands) are connected or touch,
they are merged. Newly generated objects are stored together and
will be examined when the image is segmented at a lower threshold
intensity level. The newly generated objects also link their respec-
tive subobjects. If an object does not touch any other object, it is also
stored with other newly generated objects and will be examined in
future segmentations. Methods for determining whether two objects
touch each other are detailed in Chen (1998).

Subdendrone Matching.Subdendrone matching can be based on
the dendrone structure itself, the shapes of objects represented by the
dendrones, or a combination of both. As there are many candidate

Figure 6. Enlarged and rotated version of the image in Figure 2.
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approaches for comparing subobjects, we will briefly present two
approaches (one based on structure and one based on shape) that
have been used in the DICE prototype.

The structure-based matching algorithm takes two dendrones as
inputs. One is the target dendrone computed from the target image,
which is a subdendrone extracted from a complete dendrone. The
other is the source dendrone, which is computed from a complete
image. Using a breadth-first search on the source dendrone, the
difference between the number of descendant nodes in the target
dendrone and the number of descendant nodes in the source den-
drone is calculated for each node of the source dendrone. This
difference is recursively calculated for each descendant node as
well. A similarity value between 0 and 1 is assigned to every child
node to indicate the similarity of two subdendrones. A similarity
value of 1 indicates that two subdendrones are identical and a
similarity value of 0 means that the two subdendrones do not have
any similarities.

Several simple rules are used in Chen (1998) to calculate the
similarity between two subdendrones:

1. Leaf subdendrones (dendrones that have only one node) and
nonleaf subdendrones (dendrones that have at least two
nodes) have a similarity value of 0.

2. Two leaf subdendrones have a similarity value of 1.
3. The similarity value of two nonleaf dendrones is computed

as:

Sij 5

OSSkl 3
Nk 1 Nl

2 D
OSNk 1 Nl

2 D 1 ONm

, (1)

whereSij is the similarity between dendronesi andj and the
total number of objects in dendronei is not more than the
total number of objects in dendronej . Skl is the best-fit
similarity between subdendronek, which is a subdendrone
of dendronei , and subdendronel , which is a subdendrone of
dendronej . Nk is the total number of objects in subdendrone
k, Nl is the total number of objects in subdendronel , andNm

is the total number of objects in subdendronem, which is an
unmatched subdendrone in dendronej .

The weighted average valueSij (see Eq. 1) represents the overall
similarity between the source dendrone and every subdendrone
within the target dendrone.

Shape is another important feature used to identify or match
objects from multiple images. Some of the possible techniques for
shape representation and matching (Jain, 1989) are boundary repre-
sentation techniques (chain codes, fitting line segments, B-spline
representation, control points, and Fourier descriptors), region rep-
resentation techniques (run-length codes, quad-trees, and projec-
tions), and moment representation techniques.

A distance-to-centroid representation (Chen, 1998) was used for
the DICE prototype. Similar to the structure-based matching algo-
rithm described above, the shape-based technique also requires a
breadth-first search on the source dendrone. At every node, the
distance-to-centroid signature of the object represented by that sub-
dendrone is computed. The signature is then compared with the
signature of the object represented by the target dendrone. The
details of how these signatures are computed are provided by Chen
(1998). Essentially, the centroid (or geometrical center) of the object

and the distances from all edge pixels to the centroid must be
determined. The edges are interpolated in order to produce signa-
tures that are invariant to scaling. Furthermore, it can be shown that
the distance-to-centroid edge signature is also invariant to transla-
tion and rotation. Translation has no effect on the signature because
the position of the object is never used to compute the signature.

III. THE DESIGN AND IMPLEMENTATION OF DICE
DICE is an object-oriented computational framework designed for
image characterization and retrieval based on dendronic image sig-
natures. The three primary goals of the design and implementation
of DICE are flexibility, extendability, and portability. The design of
DICE is based on an object-oriented methodology through the use of
programming languages such as C11 and Java.

Flexibility is achieved so that users of DICE can incorporate their
own image characterization algorithms. For instance, if users want
to use an image segmentation algorithm other than the pixel labeling
algorithm, they can write a method in C11 and override or add to
the default algorithm. Alternative techniques for matching objects
from multiple images can also be incorporated into DICE. Extend-
ability is achieved because the user can extend the functionalities of
DICE by adding more C11 classes. For example, because the
default image format for DICE is XPM (LeHors and Nahaboo,
1991), the user could easily add classes to process images in other
formats, such as GIF and JPEG. Portability is achieved because the
graphical user interface (GUI) is implemented in Java, which is
platform independent. The GUI can be implemented using other
languages or libraries such as X Window/Motif without modifying
other modules.

The DICE software environment can be divided into three mod-
ules: the dendrone library module (implemented in C11), the GUI
module (implemented in Java), and the interface module between
the library and the GUI (implemented in C). Figure 7 illustrates the
interactions among these three modules and the user. Details of the
application program interface (API) methods for the dendrone li-
brary classes are provided by Chen (1998). The Dendrone class that
processes the dendrones produced from images is described below.

A. The Dendrone Class. The Dendrone class in DICE is used to
segment the input image, link objects generated from the segmen-
tations to build the dendrone, reconstruct individual object images
from the dendrone, and generate PostScript dendrograms.

Figure 7. Interactions among DICE software modules and the user.
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Dendrone Data Structure.A dynamically linked tree structure is
used in the design and implementation of the dendrone data struc-
ture. For the variety of images and the large amount of information
a dendrone could contain, static memory allocation is neither prac-
tical nor efficient. During the construction of the dendrone, every
iteration of the segmentation process generates many objects. Some
of these objects may be merged immediately with other objects
whereas others may not be merged until much later. Furthermore,
the merging process requires efficient access to the parent and child
objects. After the dendrone is built, the objects are sorted according
to intensity value. To retrieve the objects quickly, and without using
a lot of memory, a pointer hierarchy is implemented (Fig. 8). The
first set of pointers gives immediate access to the objects in the
dendrone through the ids of the objects. On the other hand, the links
among related objects allow easy access to parent and child objects.
A third set of pointers group objects with different levels of inten-
sities, which are used during the segmentation and merging pro-
cesses and also facilitate parallelization of the segmentation process.

Dendrogram.For each dendrone, DICE can generate three kinds
of dendrograms in PostScript format:

(1) The noncoordinate dendrogram (Fig. 4). Thex-coordinate
of this dendrogram has no meaning and they-coordinate
indicates the intensity level (ranging from 0 to 255). In
addition, the objects in the dendrone are displayed in a
certain order: (a) Objects with higher intensity values
(brighter objects) are displayed to the left side of objects
with lower intensity values (darker objects). (b) At the same
intensity level, composite objects are displayed to the left
side of primitive objects.

(2) The x-coordinate dendrogram (Fig. 9b). Thex-coordinate
of this dendrogram corresponds to thex-coordinate of the
image from which the dendrogram is generated. They-
coordinate indicates the intensity level (ranging from 0 to
255). The individual horizontal and vertical lines in the
x-coordinate dendrogram are interpreted as in the noncoor-
dinate dendrogram.

(3) The y-coordinate dendrogram (Fig. 9c). They-coordinate
of this dendrogram corresponds to they-coordinate of the
image from which the dendrogram is generated and the
x-coordinate indicates the intensity level. As with thex-co-

ordinate dendrogram, the horizontal and vertical lines in the
y-coordinate dendrogram designate objects in the image
and the intensity levels at which the image is segmented,
respectively.

The noncoordinate dendrogram is useful because it does not
contain information related to objects’ positions within the image,
which makes it ideal for comparing dendrones generated from
rotated or scaled images. Thex-coordinate andy-coordinate den-
drograms are useful when constructing individual object images
from the dendrone. From these two dendrograms, the user can locate
an object according to itsx-coordinate and/ory-coordinate position
within the original image (see Chen, 1998, for other methods used to
locate objects). As in the noncoordinate dendrogram, composite
objects in thex-coordinate andy-coordinate dendrograms are iden-
tified by the integers near the lines representing the objects.

In Section II, the construction of dendrones was visualized as
decreasing water level on an imaginary 3D intensity terrain. This
approach works particularly well for an image with a dark back-
ground and bright foreground. If the image has a bright background
and dark foreground, the analogy is simply reversed. Namely, in-
creasing the water level (from empty to full) can reveal the relation-
ships among the objects in the image. DICE allows both a decrease
and an increase in the water level so that the user can control how
the dendrone should be properly constructed.

B. Text Files and Meta-Data. A simple text format can be
defined for dendrone storage so that a user could save the dendrones
generated from images to files for future processing. This format can
incorporate meta-data (e.g., textual descriptions of objects) for al-
ternative retrieval purposes. As an illustration, a header line/record
of a DICE-generated dendrone file has the form

Figure 9. Bi-plane image (a) with corresponding x-coordinate den-
drogram (b), and y-coordinate dendrogram (c).

Figure 8. Dendrone data structure implementation.
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maxID rows cols left top right bottom stride reverse,

where

maxID is the maximum object id in the dendrone,
rows is the number of rows in the image,
cols is the number of columns in the image,
left, top, right,andbottomare the coordinates of the subimage

from which the dendrone is generated,
stride is the incremental thresholding resolution at which the

image is segmented, and
reverseindicates whether the dendrone is generated from the

highest intensity value to the lowest or vice versa.

The remaining lines/records of the file contain information about
objects in the dendrone. The objects can be listed according to a
preorder traversal of the dendrone. For example, each composite
object would be listed as

(ID, top, left, bottom, right, cRow, cCol, size, subObjNo, meta-
data) 3,

where

ID is the id of the object,
top, left, bottom,and right are the coordinates of the object’s

bounding box (i.e., the smallest rectangle containing the object),
cRowis they-coordinate of the center of the bounding box,
cCol is thex-coordinate of the center of the bounding box,
sizeis the number of pixels in the object,
subObjNois the number of child objects, and
metadatais any textual description of the object.

Primitive (or noncomposite) objects can be listed under their parent
objects, each followed by information about the pixels in the object:

~ID, top, left, bottom, right, cRow, cCol, size, 0,metadata!

~y1, x1, intensity1!
~y2, x2, intensity2!
· · ·
~ysize, xsize, intensitysize!

where

yi (i [ [1, size]) is the y-coordinate of one pixel in the object,
xi (i [ [1, size]) is the x-coordinate of one pixel in the object,

and
intensityi (i [ [1, size]) is the intensity value of the pixel.

The encapsulation of textual information within the dendronic
data structure constitutes a new way of integrating textual and
nontextual knowledge. Themetadatacomponent of each object can
be indexed as hypertext so that image databases can be easily linked
to other text collections. Conceptual information retrieval models
such as latent semantic indexing (Berry et al., 1995; Letsche and
Berry, 1997) could then be used to match both text and image data
to natural language queries. Through the use of dendronic data
structures (as shown above), future search engines for information
retrieval could permit users to query with both textual and image
descriptions:
I’m looking for information on tiny blood vessel formations in the

macular region of the eye1[an example or sample image or
drawing].

Objects within images could be retrieved by the semantics of en-
capsulatedmetadata,by a shape- or structure-based similarity mea-

Figure 10. ImageDisplayer window for dendrone construction. Figure 11. BuildDialog window for dendrone construction.

Figure 12. DendroneDisplayer window.
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sure (see “Subdendrone Matching” from Section IIB) applied to
dendronic signatures or a combination of both.

C. GUI. The GUI module, implemented in Java, provides conve-
nient ways for the user to generate dendrones from images, recon-
struct images from dendrones, and retrieve objects in images by
matching subdendrones. The GUI also provides a customizable
configuration environment, which the user can modify according to
personal preferences.

After the user selects an input image, anImageDisplayerwindow
(Fig. 10) containing the image is displayed. In the ImageDisplayer
window, the user can select a subimage (represented by the rectan-
gle) by clicking and dragging the mouse. Without a selected sub-
image, the dendrone will be built for the entire image. By clicking
theBuild Dendrone. . . button, the user can bring up aBuildDialog
window (Fig. 11) in which a number of parameters and options
regarding the construction of the dendrone can be selected. The user
can also set the stride value using the scroll bar and edit theLeft,
Top, Right,andBottomtext fields for the subimage coordinates by
either entering numbers manually or selecting a subimage in the
ImageDisplayer window using the mouse. The radio buttons and
check boxes allow the user to generate and display selected Post-
Script dendrograms.

Image Reconstruction.With the help of the DICE GUI, recon-
structing images from dendrones can be convenient. The user first

loads the dendrone into DICE by selecting a file storing the den-
drone using theFileDialog. If the dendrone is successfully loaded,
a DendroneDisplayerwindow (Fig. 12) will be displayed. This
window contains information about the dendrone, such as the size
and coordinates of the (sub)image from which the dendrone is
generated and the stride value used to generate the dendrone. Click-
ing the Reconstruct Image. . . button will bring up aReconstruct-
Dialog window for specifying additional information concerning the
reconstruction. An ImageDisplayer window (similar to that shown in
Fig. 10) containing the original (sub)image is also displayed.

Object Retrieval by Matching Subdendrones.The MatchDialog
window (Fig. 13) can be used to retrieve objects with similar
brightness topology and/or shape as determined by matching sub-
dendrones representing the objects. The user can enter the name of
the file containing the dendrone representing the target object to
match and the name of the file containing the source image from
which objects will be retrieved. To narrow the number of potential
candidate objects, the user can increase the similarity value or
specify the size of the objects to retrieve. Finally, the user can select
the criteria for the match. Currently, DICE implements two kinds of
matching (Chen, 1998)—matching by dendrone structure and by
object shape using the distance-to-centroid signature. Users can
write their own MatchDialog class (in Java) to implement alternative
matching algorithms. After the user clicks the Match . . . button, the
matching results are displayed in aMatchResultDisplayerwindow
in which the scores are sorted by the similarity value in descending
order. The ids and sizes of the matching objects are also displayed
so that the user can double click on an item to obtain a Reconstruct-
Dialog window and reconstruct the selected object’s image.

D. The Interface Module. Because the dendrone library and the
GUI module are written in two different programming languages, an
interface module is used to communicate between them. More
specifically, in the GUI module, Java objects must invoke methods
in the C11 dendrone library. DICE uses the Java native interface
(JNI) mechanism (Campione and Walrath, 1998; Eckel, 1998) pro-
vided by Sun’s Java development kit (JDK) to accomplish the
interactions between Java objects and C11 methods. The interface
module, written in C, contains wrapper functions that call a C11
method and return results to Java objects. Such functions are re-
quired because the JDK supports only native methods written in C.
In order to call a C11 method, a C function must be used, which

Figure 13. MatchDialog window for object matching.

Figure 14. Original high-altitude photo-
graph of a terminal at the Los Angeles Airport
(or LAX) in (a), and reconstructed image from
a stride-30 dendrogram having 8,954 objects
in (b).

250 Vol. 11, 243–253 (2000)



accepts a pointer to a C11 object for subsequent method invoca-
tions.

IV. PERFORMANCE EVALUATION
To evaluate the performance of dendrone construction algorithms,
processing times for a few benchmark images (of different sizes and
contents) were recorded. All performance timings were recorded on
a Sun Ultra1 SPARCstation with a 167-MHz processor, 32-KB
on-chip cache (16-KB instruction, 16-KB data), 512-KB external
cache, and 256 MB of main memory. A C version of the DICE
dendrone library software (Chen, 1998) that exploits a command
line interface was applied as shown in Figures 14(a) and 9(a). Figure
14(b) illustrates the quality of image reconstruction possible with
DICE when a stride-30 dendrogram (storing 8,954 objects) is used
to encode the original image.

Although three different image segmentation algorithms have
been evaluated with DICE (Chen, 1998), we present elapsed CPU
times only for the pixel labeling algorithm mentioned in Section II
(“Construction”). For this algorithm, elapsed CPU times were re-
corded in four key steps of thebuildDendronalTree()function:
image segmentation, object merging, object sorting, and object
indexing (i.e., declaring object ids). To reveal the relationship be-
tween the time spent in each of these steps and the stride value used
to segment the images and construct the dendrones, stride values
ranging from 1 up to 255 were used.

A. Processing Time. Elapsed times for constructing dendrones
of the 2643 462 (in pixels) biplane image (Fig. 9a) are illustrated
in Figure 15 and Table I. The percentage of time consumed by
different steps in the dendrone construction process is also provided
in Table II, which shows construction time broken down at selected
stride values.

The smaller the stride value, the longer the total time of dendrone
construction (Fig. 15). As the stride value is chosen to be smaller,
relatively more objects are detected during the segmentation pro-
cesses. However, the sizes of the objects may be smaller than those
obtained when the stride value is larger. The curve in Figure 15
demonstrates that the majority of objects are segmented between
intensity levels 1 and 128. As the number of objects increases, the
time needed for building the dendrone increases dramatically. The
total dendrone construction time increases (regardless of the seg-
mentation algorithm) as the stride decreases (Chen, 1998). Using the
pixel labeling approach from Section II (“Construction”), Table II
indicates that the dendrone construction time is dominated by the
time spent in the object merging step when the stride value is not
large. The object merging step occupies more than 80% of the total

time. The performance profile illustrated in Table II is one example
of dendronic construction. This profile is image dependent.

B. Memory Requirements. With regard to memory utilization,
the pixel labeling version of DICE presented in this section excels;
it does not require any memory beyond that needed to store the
dendrone itself. Both the recursive and nonrecursive connectivity
filling versions of DICE (Chen, 1998) must use auxiliary memory to
store the sorted pixels. In addition, the recursive connectivity fill
version relies on the operating system for recursive function invo-
cations. It is possible that the size and contents of an input image
will cause the system’s internal stack to overflow. For the biplane
image in Figure 9(a), the process virtual memory requirement for
dendrone construction (stride set to 30) with pixel labeling and
recursive connectivity filling (Chen, 1998) is 3.7 and 5.0 MB,
respectively.

C. Retrieval Performance. The effectiveness of the object
matching algorithm using distance-to-centroid image signatures (see
Section II [“Subdendrone Matching”]) has been evaluated using
both artificially generated and real-world complex images. A num-
ber of images have been used to evaluate the effectiveness of the
distance-to-centroid image signature matching algorithm. Figure 16
illustrates two of the images used for the evaluation.

Tests using artificially generated images that contain simple
shapes have proven that the distance-to-centroid image signature
algorithm is effective (Chen, 1998). To further test its effectiveness
on real-world (more complex) images, in which the shapes and
intensity values of objects are much more diverse and irregular, the

Table I. Elapsed times (ms) of dendrone construction (at selected stride values) for the image in Figure 9(a) using the pixel labeling algorithm.

Stride Segmentation Merging Indexing Object Sorting Total

1 15983.31 491851.16 114.31 1654.03 509615.09
5 4612.73 201469.41 76.69 7113.61 213275.58

10 2781.57 65908.59 39.02 9484.02 78214.82
20 1733.67 70949.89 20.09 1756.38 74460.95
30 1419.86 57862.00 12.78 1881.23 61176.66
50 1046.15 19135.43 4.55 2889.49 23076.08

100 695.25 4046.65 0.65 8322.47 13065.35
150 233.76 0.00 1.40 128.96 364.48
200 610.61 0.00 0.10 875.80 1486.73
255 585.97 0.00 0.03 0.07 586.30

Table II. Percentage time for different steps of dendrone construction (at
selected stride values) for the image in Figure 9(a) using the pixel
labeling algorithm.

Stride Segmentation Merging Indexing
Object
Sorting

1 3.14 96.51 0.02 0.32
5 2.16 94.46 0.04 3.34

10 3.56 84.27 0.05 12.13
20 2.33 95.28 0.03 2.36
30 2.32 94.58 0.02 3.08
50 4.53 82.92 0.02 12.52

100 5.32 30.97 0.01 63.70
150 64.13 0.00 0.39 35.38
200 41.07 0.00 0.01 58.91
255 99.94 0.00 0.01 0.01
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aerial photograph of the LAX terminal was used. The goal is to
locate that airplane and similar airplanes in the reverse-video source
image (Fig. 16b). The query image contains only the airplane (Fig.
16a), which is a reconstructed object image (from the target image
in Fig. 14) obtained via subdendrone extraction. The dendrone for
the source image in Figure 16(b) was constructed from lowest to
highest intensity value (i.e., water level rises as the initial 3D terrain
is filled).

Compared with simple shape matching, matching objects in
complex images can be problematic. In such images, small objects
that contain only a few pixels are much more likely to be present.
The minimum and maximum object sizes for matching can be used
to filter very small objects during the matching process. A distance-
to-centroid signature for a small object often only contains a few
pixels, which is not very useful in the computation of the signature
image. Similarly, scaling a large object may cause the loss of some
important features in the scaled signature image. In the extreme

case, if the smaller object has only one pixel, its signature image will
also have one pixel. If either the larger or smaller object has only one
pixel, the matching algorithm will recognize the two images as a
perfect match.

Intensity values also play an important role in object matching.
By combining shape matching and object brightness topology
matching, better results may be achieved. Figure 17 shows the top
six matched objects from the image in Figure 16(b) according to
similarity in distance-to-centroid signatures (see Section II [“Sub-
dendrone Matching”]). During the matching, only objects whose
sizes were between 400 and 1,000 pixels were processed and both
object shape and intensity level were used for matching. The best
match is the target/query airplane. However, several other objects
defining complete or partial airplanes (4.5 of the 7 possible planes)
were highly ranked (within the top six matches) in similarity. As
with all such approaches, the effectiveness of this matching algo-
rithm depends on the input image.

Because the matching is based on (sub)dendrones, the construc-
tion of the dendrone from the input image, particularly the choice of
the stride value, is crucial to the effectiveness of the matching
process. If the stride value is too large, some objects may never be
presented in the dendrone and consequently will never be matched.
If the stride value is too small, there will be many potentially

Figure 15. Total elapsed time of dendrone construction for the
image in Figure 9(a) using the pixel labeling algorithm.

Figure 16. Images used to evaluate the ef-
fectiveness of the distance-to-centroid image
signature matching algorithm: airplane object
(a) extracted from Figure 14, and a reverse-
video image (b) of the same Los Angeles Air-
port (LAX) terminal from Figure 14.

Figure 17. Matching objects from Figure 16(b).

252 Vol. 11, 243–253 (2000)



matching objects present in the dendrones, which slows down the
matching process and makes the potential matches difficult to dif-
ferentiate.

V. SUMMARY
Dendronic image analysis is a completely neutral, data-driven, self-
structuring process. This approach respects the objects within the
image, rather than imposing external constraints, divisions, or de-
scriptors onto the image space. Dendronic analysis results in self-
definition, a neutral description of objects within the image. At the
same time, data compression is achieved. The dendrone is robust to
noise, free of contextual information, and invariant under Euclidean
geometric transformations. Dendronic signatures have significant
potential to provide the basis for an operational capability to detect
probable target object identities between multiple images and to
recognize and verify similar features in a variety of image contexts.

DICE is a flexible, extendable, and portable implementation of
dendronic image characterization. The dendrone library and APIs
allow users to easily extend the functionalities of DICE and add
alternative algorithms. The GUI provides a simple and straightfor-
ward way to analyze images using their dendronic signatures and to
locate objects with similar shapes (via subdendrones) from multiple
images. See http://www.cs.utk.edu/~dice for on-line information
concerning DICE.

A serial implementation for dendrone construction is being used
within DICE (Chen, 1998). An optimized parallel approach to image
segmentation could speed up the object merging process. Research
in shape matching would provide insight into alternative object
matching algorithms that could be used for locating objects with
similar shapes. Also, the ability to annotate a subdendrone with
text/meta-data describing the corresponding objects could facilitate
the integrated retrieval of text and image information from digital
libraries.
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