
Potential of Multivariate Quantitative Methods for
Delineation and Visualization of Ecoregions

WILLIAM W. HARGROVE*

FORREST M. HOFFMAN

Environmental Sciences Division
Computer Science and Math Division
Oak Ridge National Laboratory
P. O. Box 2008, M.S. 6407
Oak Ridge, Tennessee 37831-6407

ABSTRACT / Multivariate clustering based on fine spatial
resolution maps of elevation, temperature, precipitation, soil
characteristics, and solar inputs has been used at several
specified levels of division to produce a spectrum of
quantitative ecoregion maps for the conterminous United
States. The coarse ecoregion divisions accurately capture
intuitively-understood regional environmental differences,
whereas the finer divisions highlight local condition
gradients, ecotones, and clines. Such statistically generated
ecoregions can be produced based on user-selected
continuous variables, allowing customized regions to be
delineated for any specific problem. By creating an objective
ecoregion classification, the ecoregion concept is removed

from the limitations of human subjectivity, making possible a
new array of ecologically useful derivative products. A
red–green–blue visualization based on principal components
analysis of ecoregion centroids indicates with color the rel-
ative combination of environmental conditions found within
each ecoregion. Multiple geographic areas can be classified
into a single common set of quantitative ecoregions to pro-
vide a basis for comparison, or maps of a single area through
time can be classified to portray climatic or environmental
changes geographically in terms of current conditions.
Quantified representativeness can characterize borders be-
tween ecoregions as gradual, sharp, or of changing char-
acter along their length. Similarity of any ecoregion to all other
ecoregions can be quantified and displayed as a ‘‘repre-
sentativeness’’ map. The representativeness of an existing
spatial array of sample locations or study sites can be
mapped relative to a set of quantitative ecoregions, sug-
gesting locations for additional samples or sites. In addition,
the shape of Hutchinsonian niches in environment space can
be defined if a multivariate range map of species occurrence
is available.

Ecoregions are designed to help users visualize and
understand similarities across complex multivariate
environmental factors by grouping areas into like cat-
egories. The basis for such groupings has many con-
tentious conceptual underpinnings. Debate abounds as
to whether ecoregions should be specialized for a
particular use or general purpose, spatially contiguous
versus disjunct, nestable versus nonhierarchical, and
whether ecoregions can be defensible as units of
management, legislation, or even ecological triage
(Omernik 1995, 2003; Overton and others 2002;
Leathwick and others 2003). Supreme among these
issues, however, is the question of whether ecoregions
can (or should) be delineated using quantitative sta-
tistical methods or whether they can only be drawn

using human expertise in a qualitative, weight-of-evi-
dence approach (McMahon and others 2001).

It is not our intention to add to this debate. These
conceptual issues are well represented in this special
issue and elsewhere. Rather, we sidestep the question
as to whether ecoregions are computable and demon-
strate the ramifications of quantitatively deriving eco-
regions. We argue that the spate of ancillary products
resulting from the quantitative treatment of ecoregions
enhances and expands the utility of the ecoregion
concept and makes substantial new contributions to
niche modeling, network and sample design, change
detection, and conservation.

Regionalizations are models, whether quantitatively
or qualitatively derived. Quantitative models are, how-
ever, more explicit, repeatable, transferable, and
defensible than subjective models based on human
expertise. This transferability and repeatability makes
quantitative models more objective than their qualita-
tive counterparts. Human experts might be able to
rationally defend drawing a particular borderline be-
tween ecoregions, but they might be unable to eluci-
date the method used to place it at that precise
location. Quantitative ecoregionalization techniques
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are not perfectly objective, because they still require
subjective ecological expertise in the choice of data
layers to include and in the interpretation of the
resulting ecoregions. Nevertheless, the pursuit of a
fully describable quantitative method for ecoregional-
ization is a desirable goal, whether as a replacement or
an augmentation to qualitative, expert-opinion-based
approaches.

The ability to explicitly select and control the input
variables allows quantitative regionalizations to be cus-
tomized for specific uses. Using quantitative methods,
special-purpose ecoregions can be created specifically
for particular uses. Such customized regionalizations
can provide additional discrimination in places where
popular generalized ecoregion schemes might miss
particular features of importance.

In qualitative ecoregionalization, human experts
might intentionally adjust the weighting of particular
input layers in their mental model in particular spots
across the map, whereas quantitative methods usually
produce regionalizations in which all input variables
receive equal weighting. Such evenly weighted ecore-
gion products provide, at the very least, an initial basis
from which factor weights can be subsequently spatially
modified by human expertise. Explicit spatial maps of
altered weights, if known, could be considered directly
as inputs into a fully quantitative model.

Sampling the Toolbox of Quantitative Methods

A full review of quantitative methods that have been
used in regionalization is beyond the scope of this
article. Although not exhaustive, brief treatment of
major types of quantitative approach might provide
context, and counterbalance more typical subjective
approaches described elsewhere in this special issue.
Most quantitative approaches rely on Gleasonian rela-
tionships between environmental patterns and species
occurrence, but some have been tested directly using
species distribution data, which include Clementsian
effects of biotic interactions on geographic distribu-
tions. Strengths and weaknesses of each quantitative
method are highlighted.

The Holdridge Life Zone model, usually shown as a
set of hexagons arranged inside a triangular plot, was
an early quantitative multivariate approach for defining
ecoregions (Holdridge 1947). Plotting mean annual
‘‘biotemperature’’ against mean annual precipitation
and potential evapotranspiration ratio places any loca-
tion into one of a set of predetermined equal-area
hexagons, which are assigned ecoregion names a priori.
Homogeneity is not controlled, because several hexa-
gons could represent a single ecoregion type. Lugo and

others (1999) recently revisited the Life Zone approach
for global vegetation, finding it adequate for forests, but
of limited utility for grasslands, shrublands, and non-
vegetated lands.

Kohonen’s (1982, 1995) Self-Organizing Maps
(SOMs) use a two-layer neural network to divide a
multivariate map into ecoregions. During training,
neurons are reinforced within a gradually shrinking
network neighborhood around the best predictors
(Hung 1993). Using the first five principal components
of seasonal averages of climate data from 18 stations,
Malmgren and Winter (1999) used a one-dimensional
SOM to divide Puerto Rico into four natural climatic
zones. It might be difficult, however, to transfer the
‘‘learning’’ from one neural network into a form that
can be used by others.

Quantitative Ecoregions for Single Species

Mapping the geographic range of a single species of
animal or plant is a special case of ecoregion delinea-
tion. Ecological niche theory is central to understanding
how environmental change affects species abundance
patterns (Jackson and Overpeck 2000). Hutchinson
(1957) conceived of the niche as a multidimensional
‘‘hypervolume’’ with dimensions defined by the envi-
ronmental factors that influence the fitness of individ-
uals of that species.

Although Hutchinson’s conception was static, envi-
ronmental change involves temporal alteration of
combinations of niche variables. Hutchinson’s niche
envelope assumes that a steady-state equilibrium with
present environmental conditions has allowed ade-
quate time for perfect adaptation and exhaustive
migration to all parts of the potential range. Acclima-
tion to changing conditions and historical factors lim-
iting geographic dispersal are not considered by most
quantitative range-prediction techniques [but migra-
tion can be simulated in a subsequent step (i.e., Pet-
erson and others 2003)].

Generalized Additive Modeling (GAM) uses regres-
sion modeling to establish empirical relationships be-
tween a response variable (i.e., presence of a particular
species at a location) and an individually smoothed set
of spatial predictor variables (Hastie and Tibshirani
1990). GAM additively calculates the component re-
sponse and can handle nonlinear and nonmonotonic
relationships between the response and predictor
variables. No parametric assumptions are necessary, but
the probability distribution (e.g., binomial, Poisson,
Gaussian) of the response variable must be specified.
Generalized Linear Modeling (GLM) is a special case of
GAMs in which predictors are parameterized instead of
being smoothed (McCullagh and Nelder 1997).
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Generalized additive modelings may be biased if
they are fitted using presence-only datasets (e.g., mu-
seum collection localities). Because of their sequential
nature, GAMs are poor at capturing interactions
among predictor variables. A crucial step is the selec-
tion of an appropriate level of spatial smoothing for a
predictor. Relationships between predictor variables
and the response variable are empirical rather than
mechanistic or process based. Therefore, GAMs fitted
to data in a small region generally do not extrapolate
well across space or time.

Generalized additive modeling was used by Austin
and others (1990) to model the niches of five Eucalypt
species. Overton and others (2001) used GAM to
generate geographic frameworks in New Zealand for
the purposes of ecosystem management and sustain-
ability. Overton and others (2000), Leathwick (2001),
and Lehmann and others (2002a) have used GAM
repeatedly to predict occurrence of many species,
building up estimates of community structure and
biodiversity. They followed a Predict First, Classify La-
ter (PFCL) paradigm. Brooker and others (2002)
demonstrated the utility of ecoregions in epidemiology
and human health by using logistic regression model-
ing to quantitatively delineate schistosomiasis regions
in Africa. Lehmann and others (2002b) created Gen-
eralized Regression Analysis and Spatial Prediction
(GRASP), which formalizes the regression modeling
approach to species distribution modeling using GAM.
See extensive reviews of GAM in Guisan and others
(2002) and Guisan and Zimmerman (2000).

Classification and Regression Trees (CART) and
Regression Tree Analysis (RTA) for categorical and
continuous response variables, respectively, have been
used for both regionalization (Stoms and Hargrove
2000) and geographic range prediction (Iverson and
others 1999). A regression tree is a binary decision tree
in which branching at each step is defined by test cri-
teria involving a single best predictor variable, which
can be continuous or categorical. CART and RTA
overfit a tree on a training sample, which then has
almost as many terminal nodes as there are training
observations. Nodes are then pruned from the tree or
shrunk (at the cost of decreased accuracy) to achieve
generality. CART and RTA choose the locally best dis-
criminatory feature at each stage in the divisive process
rather than the globally best discriminator (Stockwell
and Noble 1992), and they enforce a sequential uni-
variate model rather than a true multivariate approach.
White and others (1999) used RTA to predict bird
occurrence data in Oregon in terms of 10 environ-
mental variables, and Rathert and others (1999) found
environmental correlates with richness of Oregon

freshwater fishes. Iverson and Prasad (1998) used RTA
to generate predicted ranges for 80 tree species in the
eastern United States following climate change. Prince
and Steininger (1999) used RTA with six forcing vari-
ables, including rainfall, temperature, and photosyn-
thetically active radiation, to stratify sampling in the
Large Scale Biosphere–Atmosphere Experiment in
Amazonia.

Several quantitative environmental envelope-based
methods have been developed to ascertain habitat
suitability. Busby (1991) developed BIOCLIM, which
uses a simple bounding hyperbox method to capture
species occurrences in data space. Although widely
used, BIOCLIM overpredicts when species distribution
is influenced by a combination of environmental pre-
dictors rather than by each one individually (Carpenter
and others 1993). Walker and Cocks (1991) produced
HABITAT, which attempts to form a convex envelope
more tightly containing all species occurrences than
the simple rectilinear envelope of BIOCLIM. Carpen-
ter and others (1993) found that BIOCLIM overpre-
dicted and HABITAT underpredicted habitat, and they
proposed a new method, DOMAIN, based on similarity
with all occupied points using Gower’s metric. This
metric is the arithmetic mean of the differences be-
tween the two points in each dimension, after being
standardized by the range to equalize the contribution
from each predictor. Hirzel and Arlettaz (2003) point
out that the Gower metric does not consider the den-
sity of occupied points and is, therefore, subject to
influence by outliers.

Hirzel and others (2002) describe Ecological Niche
Factor Analysis (ENFA), which does not require true
absence data. ENFA discriminates environments occu-
pied by species from all environmental combinations
occurring within a larger study area. ENFA models the
environmental niche relative to some set of environ-
mental variance found within a larger study area. The
range of conditions represented in the larger area
chosen therefore constrains the definition of the
environmental niche envelope based on its context.

Hirzel and others (2001) tested ENFA and GLM
against three virtual species that were spreading, at
equilibrium, and overabundant. GLM was badly af-
fected for the spreading species, but produced slightly
better results than ENFA when the species was over-
abundant. Both methods produced equivalent results
when the virtual species was at equilibrium.

Zaniewski and others (2002) compared GAMs with
presence-only data to GAMs using computer-generated
‘‘pseudoabsences’’ and ENFA models. By using the
same presence data for all models, absence data were
isolated as the varying factor, allowing different tech-
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niques for modeling presence-only and pseudoabsence
data to be compared. Although presence-only GAMs
predicted individual species distributions more accu-
rately than ENFA, they were less effective than ENFA in
highlighting biodiversity ‘‘hot spots’’ from the sum-
ming of species predictions. Engler and others (2004)
found that using ENFA-weighted pseudoabsences en-
hanced the quality of GLM-based potential distribution
maps for rare and endangered species.

Stockwell and Noble (1992) described a Genetic
Algorithm for Ruleset Prediction (GARP), which uses a
genetic algorithm and four types of rule to inductively
develop a rule set for predicting a geographic range
from a set of presence-only data for a particular species.
Starting with an initial set of approximate rules, a ge-
netic algorithm modifies them in ways that might (or
might not) lead to an increase in predictive power.
Randomize, mutate, and concatenate operators alter
individual rules in a rule set, and optimized sets of
rules with the best predictive ability are retained.

GARP predicts a slightly different geographic range
using each optimized rule set. These alternative ranges
are usually overlaid geographically and used as a single
pseudosuitability map (Peterson and others 2003).
Because GARP can suffer problems with repeatability,
lack of absence data, and variable prior proportions,
Stockwell and Peters (1999) developed a web-based
system that eliminates these and other potential sour-
ces of error. Peterson and Cohoon (1999) found that
GARP predictions were sensitive to the number of
environmental variables that are included. Including
five of eight environmental layers was necessary to
avoid broad variance in predicted ranges for three
species of birds. GARP can utilize museum collection
data and has been used to estimate the ultimate po-
tential distributions for invasive species (Peterson and
Vieglais 2001). Martinez-Meyer and others (2004) used
GARP to predict geographic distributions of 23 extant
mammal species reciprocally between the Last Glacial
Maximum and the present, suggesting that ecological
niches are relatively constant over time. Such longitu-
dinal evolutionary conservatism suggests that niche
modeling can be used successfully to anticipate climate
change effects on biodiversity.

Quantitative Clustering of Biotic Assemblages

Statistical clustering is the ordination and classifi-
cation of multiple nonidentical objects into subgroups
based on their similarity. Hierarchical clustering pro-
vides a series of divisions, based on some measure of
similarity, into all possible numbers of groups, from
one single group containing all objects, to potentially
as many groups as there are objects. Hierarchical

clustering is computationally intensive, so the assem-
blage to be classified must be limited to relatively few
objects. Nonhierarchical clustering provides a single,
user-specified level of division into groups; however, it
can be used to classify a large number of objects be-
cause it does not divide exhaustively.

Cluster analysis can use occurrence data from a set
of geographic sites to identify biotic communities that
coexist in space. Overpeck and others (1985) clustered
fossil pollens through time to identify modern analogs
for ancient vegetation assemblages retrieved from
cores. Campbell and McAndrews (1991) used a cluster
analysis to group 33 lakes in southern Ontario. They
described community changes in response to the Little
Ice Age within the region by grouping similar pollen
diagrams.

Multivariate Clustering to Form Homogeneous
Regions

Several investigators have recognized the potential
of geographic multivariate clustering for delineating
homogeneous regions objectively within small maps
(Belbin 1993; Omi and others 1979; Host and others
1996; Bunce and others 1996). Host and others (1996)
used clustering to establish separate climatic and
physiographic regions for northern Wisconsin, but
then combined them using a simple GIS overlay.
Environmental characteristics have been clustered to
produce uniform regions of geology (Harff and Davis
1990), regions of uniform crop yield (Lark 1998), and
regions of constant soil fertility (Carter 1997). Bernert
and others (1997) used cluster analysis to further sub-
divide an existing expert-derived ecoregion, the Wes-
tern Corn Belt Plains, and Krohn and others (1999)
used geographic clustering to create hierarchical bio-
physical regions of Maine at 21 km resolution. Soriano
and Paruelo (1992) used normalized multidimensional
ordination of remotely sensed data to form homoge-
neous ‘‘biozones’’ for Patagonia in southern Argentina.

Hessburg and others (2000) used TWINSPAN, a
divisive hierarchical method to create groups of sub-
watersheds of the Columbia River Basin. Repeated
divisive classifications of overlapping regions allowed
construction of pedigree trees showing similar analysis
ancestries among subregions. Region separation was
evaluated using discriminant analysis and cross-valida-
tion. Hessburg and others (2000) prestratified using an
expert-derived regionalization and binned continuous
ordinal variables before starting their quantitative
process. Not all of their resultant regions nested within
even the largest expert-derived domains with which
they were initially constrained. Sequentially divisive
methods are unlikely to result in equal-variance re-
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gions, particularly if some regions are subsequently
recombined.

Jensen and others (2001) used 19 indirect biophys-
ical variables to hierarchically classify subwatersheds in
the Columbia River Basin using agglomerative cluster-
ing with Ward’s method. Subsequent analysis of vari-
ance (ANOVA) showed that the hydrologic subregions
produced were highly significant in explaining Forest
Service watershed and stream management hazard
ratings, although no comparison was made with the
regionalization of Hessburg and others (2000) or with
expert-derived regions.

Zhou and others (2003) created objective ecore-
gions of Nebraska using an agglomerative hierarchical
clustering procedure based on multitemporal satellite
data, along with climate and soil information. Their
aggregation procedure combined 2024 polygons to
form 66 and 23 hierarchical regions. Because only
spatially adjacent regions are merged, island and bar-
rier features (i.e., water bodies and rivers) require
human intervention during processing to prevent lin-
gering arbitrary separations.

Leathwick and others (2003) created ‘‘environ-
mental domains’’ at 1 km resolution for New Zealand
using a 2-stage multivariate classification based on 10
climatic and landform variables affecting plant physi-
ological processes. They first used nonhierarchical
clustering to produce 350 geographic groups, then
used sequential agglomerative clustering to obtain 20
final domains. In both stages, they used the Gower
metric as a similarity measure, which is sensitive to
outliers (Hirzel and Arlettaz 2003). They presented a
tree showing the similarity of the 20 final domains,
each of which were intuitively recognizable.

We developed a supercomputer-based multivariate
statistical clustering algorithm to define ecoregions
within extensive, high-resolution maps containing
many multivariate descriptors (Hargrove and others
2001) (Figure 1). The user can specify the number of
clustered ecoregions that result from the process,
making it possible to divide the map into a few large,
coarsely-defined ecoregions or a larger number of
small, highly specified ones.

The nonhierarchical algorithm consists of a revers-
ible transformation between two realms: one in two-
dimensional geographic map space and one in multi-
dimensional data space. Normalized variable values
from each map raster cell are used as coordinates to
plot each map cell in an environmental space with as
many axes as there are multivariate environmental
dimensions. Normalization gives environmental
parameters measured in different units equal spacing
by establishing a mean of zero and a unit standard

deviation. Because the plotted location of map cells in
data space pinpoints the combination of environmen-
tal variables within that map cell, two map cells that are
plotted close to one another in data space will have
similar mixtures of environmental conditions and are
likely to be classified into the same ecoregion cluster.
Thus, similarity is coded as separation distance in
environmental data space.

We use the iterative k-means algorithm of Hartigan
(1975), which begins with a user-specified number of
ecoregion clusters, k, into which the map cells are to be
grouped. All map cells are examined sequentially to
find the most widely separated set of cells that will
provide k initial ‘‘seed’’ centroids, one for each of the
desired k cluster groups. In a single iteration, each map
cell is assigned to the closest (i.e., environmentally
most similar) centroid. At the end of the iteration,
once all map cells are assigned to a centroid, the
coordinates of all map cells within each group are
averaged to produce a new, adjusted centroid for each
cluster, and another iteration of assigning map cells to
these new centroids begins. The iterative process of
classifying map cells and adjusting centroid locations
continues until fewer than a predetermined number of
map cells change cluster assignments during an itera-
tion. After the process has converged on a particular
grouping scheme, the k ecoregions have been statisti-
cally defined.

Once cluster assignments have stabilized, map cells
are reassembled in geographic space, retaining their
ecoregion classifications. Although geographic coordi-
nates are not used directly in the classification, ecore-
gions tend to be geographically cohesive because of the
spatial autocorrelation that is usually present in the
environmental data. Because of the Euclidean assign-
ment method, the k-means algorithm tends to fit
globular clusters of equal size in data space. Thus, all
large ecoregions share a similar upper limit on within-
group variance and have a similar maximum radius
around each centroid. Although other clustering
methods (i.e., Ward’s, average, single, or complete
linkage) are available, the uniform heterogeneity
across ecoregions provided by k-means prevents the
creation of side-by-side ecoregions that have vastly dif-
ferent within-region variance.

We call this empirical process Multivariate Geo-
graphic Clustering (MGC) and have implemented it in
a parallel algorithm coded in C using the Message
Passing Interface (MPI). Our code is dynamically load
balancing and fault tolerant and performs both initial
seed-finding and iterative cluster assignment in parallel
(Hoffman and Hargrove 1999). Individual nodes
independently classify subsets of cells, then combine
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results at the end of an iteration. As a result, the
quantitative ecoregionalization process is not compu-
tationally limited.

Ecoregions determined using MGC are self-
describing, in that the coordinates of the final cent-
roids quantitatively define the synoptic conditions for
each ecoregion. Nominative multivariate conditions
within a particular ecoregion are described by the N
coordinates of its centroid. The technique is paramet-
ric only in that means are used to calculate each new
centroid. Rather than imposing a preconceived exter-
nal grouping upon the map, the variance structure
present in the environmental conditions is used,

allowing a uniform classification structure to emerge
from the data.

Strong correlations among input variables will affect
clustering results. For example, elevation might be
correlated with temperature and other climatic vari-
ables. Each input map should be selected or designed
to contain unique information in order to preserve
orthogonality in data space. Even strongly correlated
inputs can be clustered by first performing a Principal
Components Analysis (PCA) and then clustering in a
data space formed by the PCA axes. Patterns resolved
by MGC have proven robust to even strong correlations
among a few input variables.

Figure 1. The Multivariate Spatio-Temporal Clustering procedure involves a transformation (moving clockwise from upper
left) from geographic space (green) to data space (blue) and back. Normalized values of multivariate conditions in each map
cell are used as coordinates to locate each map cell in an abstract data space. Although only three axes are shown, the process
considers many multivariate characteristics. An iterative k-means clustering procedure assigns each cell to the closest of k

centroids. At the end of each iteration, centroid positions are recomputed. After convergence, cells are reassembled in geo-
graphic space, colored by their final cluster assignments. Each resultant quantitative ecoregion contains roughly equal envi-
ronmental heterogeneity.
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Multivariate Geographic Clustering Across
Space

Initially, we performed a number of empirical
regionalizations for the conterminous United States at
1 km resolution, dividing the United States into as
many as 3000 distinct ecoregions (Figure 2A), (Har-
grove and Luxmoore 1998). We included nine char-
acteristics from three categories—elevation, edaphic

factors, and climatic factors. The edaphic factors were
(1) plant-available water capacity, (2) soil organic
matter, (3) total Kjeldahl soil nitrogen, and (4) depth
to a seasonally high water table. The climatic factors
were (1) mean precipitation during the growing sea-
son, (2) mean solar insolation during the growing
season, (3) degree-day heat sum during the growing
season, and (4) degree-day cold sum during the
nongrowing season. The growing season was defined
by the frost-free period between mean day of first and
last frost each year. A map for each of these charac-
teristics was generated from best available data at a 1-
km resolution for input into the clustering process.
Each of the input maps contained more than 7.8
million cells. Such map, data, and ecoregion resolu-
tion surpasses that usually accomplished by ecoregion
experts using qualitative methods. These maps appear
to capture the ecological relationships among the
nine input variables (Figure 2a). More recently, we
have added new variables and divided the United
States into as many as 5000 ecoregions. Twenty-five
environmental factors, including elevation, mean and
extremes of annual temperature, mean monthly pre-
cipitation, soil nitrogen, organic matter and water
capacity, frost-free days, soil bulk density and depth,
and solar aspect and insolation were included (Har-
grove and Hoffman 2003).

Visualizing Ecoregion Similarity Using
Similarity Colors

Randomly colored ecoregion maps emphasize the
location of borders between ecoregions. However,
ecologists might also wish for some indication of how
different the mixture of environmental conditions is
across the border between neighboring ecoregions.
Because the final location of the cluster centroid is, by
definition, the most centrally located point inside each
cluster, the data space coordinates of the centroid
provide a description of the average ecological condi-
tions in this cluster ecoregion. Likewise, differences
between the centroid coordinates from two ecoregions
quantify the differences between the average environ-
ments found in each cluster ecoregion.

We devised a statistical coloring scheme to visualize
similarities among environments within different eco-
regions. If we use a PCA, either before or after MGC, to
condense a larger number of ‘‘raw’’ environmental
variables into orthogonal principal component axes,
we can map the first, second, and third principal
component scores to a red–green–blue (RGB) color
triplet. In this way, the combination of values for the
coordinates for each cluster centroid are used to

Figure 2. (A) The 3000 most different quantitative ecore-
gions in the United States based on nine variables, including
precipitation, solar input, elevation, depth to water table, soil
nitrogen and organic matter, soil water-holding capacity,
heating degree-days during the growing season, and cooling
degree-days during the nongrowing season, colored ran-
domly. (B) When PCA is performed on the nine variables and
the first three scores are assigned to red, green and blue, the
color of each ecoregion indicates the relative mix of the nine
environmental conditions inside each ecoregion. Red is
‘‘physiographic position’’ (i.e., low precipitation, high solar
insolation, high elevation, and deep water table). Green is
‘‘plant nutrients’’ (i.e., high soil N, organic matter, and
available water). Blue is ‘‘temperature’’ (i.e., few degree-days
heat and many degree-days cool). Shown in these Similarity
Colors, the borders between individual ecoregions disappear
and the map now shows regional scale gradients in environ-
mental conditions.
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specify a unique color for that ecoregion that indicates
the relative mixture of each environmental factor.
Ecoregions containing similar environmental combi-
nations are colored similarly.

The ecoregion map using Similarity Colors appears
strikingly different from that using random colors.
Individual ecoregion borders disappear and the Sim-
ilarity Colors reveal smooth gradients that reflect the
dominant suites of variables affecting environments in
each region of the country (Figure 2B). The red
Southwest is dominated by physiographic factors such
as low precipitation, high solar radiation, and a deep
water table. The blue Northeast is dominated by
temperature factors, and the green Southeast is
dominated by fertile soils. The upper Midwest is high
in all factors, but is light blue because of the cold
continental winter. The Pacific Northwest and the
Central California valley are light green, indicating
favorable conditions for plants. It is not possible to
code maps by Similarity Colors when ecoregions are
created qualitatively.

Characterizing Borders Between Ecoregions

Borders between ecoregions can be sharp, forming
distinct ecotones. More commonly, however, gradual
transitions cause edges to be indistinct, and it is diffi-
cult to locate a line of demarcation between distinct
ecoregions (Bailey 1983). We have termed this type of
gradual border an ‘‘ecopause’’ (Hargrove and Hoff-
man 1999). Indeed, a border can begin at one geo-
graphic location as an ecotone, and then transform
slowly along its length into an ecopause. Approaches to
distinguish these different types of border have in-
cluded fuzzy set theory (Leung 1987; Lark 1998) and
wavelet analysis (Csillag and others 2001; Csillag and
Kabos 2002), but no single method has been widely
adopted.

Fundamental to characterizing the sharpness of
borders is quantifying how representative a particular
location is of its parent ecoregion. In MGC, the
Euclidean distance from each cell to its centroid
measures its deviation from the cluster norm. Cells
close to their centroids are more representative of
their cluster ecoregions than cells far from their
centroids in environmental space (Belbin 1993). If we
depict these ‘‘representativeness’’ values as elevations,
we can create a continuous surface whose height in-
versely corresponds to the representativeness of the
cell at that geographic location (Hargrove and Hoff-
man 1999).

Because the edge properties are calculated for each
pair of adjacent clusters, each side of every border has

two distinct sharpness properties. We used contour
lines of equal representativeness to visualize the
sharpness characteristics of borders between ecore-
gions (Hargrove and Hoffman 1999). Closely spaced
representativeness contours reflect steep edges and,
therefore, a sharp ecotone. On the other hand, widely
spaced representativeness contours indicate gradually
sloping representativeness, characteristic of an indis-
tinct ecopause. Representativeness contour lines have
the flexibility to represent mixed gradual/sharp bor-
ders, as well as borders whose characteristics change
along their length.

Figure 3 shows the representativeness surface for
southwest Georgia, Alabama, and northern Florida.
The topography of each cell is obtained from the
Euclidean distance from that cell’s location in envi-
ronmental data space to the centroid of its ecoregion.
Cluster membership is shown in Figure 3 as the Simi-
larity Colors of each cell. The random orientation and
meandering character of the contours near the Coastal
Plain and Piedmont ecoregions in southern Alabama
clearly indicate that this border is an ecopause (i.e.,
environmental gradients are relatively unchanging).
On the other hand, the closely spaced, parallel contour
lines separating the Piedmont from the Ridge-and-
Valley in northern Alabama reveal this border as a
sharp ecotone.

Figure 3. Borders between adjacent quantitative ecoregions
can be characterized as sharp or gradual using representa-
tiveness contours. Georgia is at the right, Alabama is at the
left, and the Florida panhandle is at the bottom. Ecoregions
are shown in Similarity Colors, as in Figure 2B. The repre-
sentativeness elevation of each cell is calculated by measuring
the Euclidean distance in data space from the cell to the
centroid of the quantitative ecoregion to which the cell was
assigned. Representativeness contours are closely spaced and
parallel adjacent to sharp borders, but meander near gradual
borders.
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Abrupt changes in Similarity Colors are accompa-
nied by the numerous parallel contours of an ecotone,
whereas subtle color changes are accompanied by the
meandering contours of an ecopause. Close represen-
tativeness contours create thick black lines where eco-
region borders are sharp ecotones. Representativeness
contours combine the traditional notion of exclusive
membership of each location in a single ecoregion
with a quantitative measure of goodness of fit or
belonging.

Quantifying the Similarity of Ecoregions

When ecoregions are quantitatively derived, one can
select a single ecoregion of interest and then produce a
sorted list of the similarity of all other ecoregions to the
one selected. The chosen ecoregion establishes an
origin in data space and, using the Euclidean distance
from this origin to the centroid of every other ecore-
gion, pairwise similarity measures can be calculated.
Coding these pairwise similarity values as gray levels,

the degree of similarity of all ecoregions to the selected
ecoregion can be mapped.

Thus, maps can be drawn that show the degree of
innate similarity between a particular selected ecore-
gion and the rest of the map. For example, starting
with the 1000 most different ecoregions based on the
25 primary environmental factors described earlier, we
produced a map of ‘‘Everglades-ness’’ that shows how
similar other regions are to the Florida Everglades
(Figure 4). Variables considered include elevation,
temperature, precipitation, soil characteristics, and
solar inputs (Hargrove and Hoffman 2003). Darker
areas are most similar to the selected ecoregion. The
Okefenokee Swamp in Georgia, the Great Dismal
Swamp in Virginia, the Mississippi Delta, and the Wis-
consin/Minnesota ‘‘Land of a Thousand Lakes’’ all
rank high in their degree of ‘‘Everglades-ness.’’ These
comparative representativeness maps quantify the
ecoregion comparisons that ecologists have always
wanted to make but, using traditional expertise-based
ecoregions, could only subjectively estimate.

Figure 4. Maps of similarity to any selected quantitative ecoregion can be produced. The Euclidean distance in data space from
the centroid of each ecoregion to the centroid of the chosen region is calculated. Ecoregions with closer centroids are more
similar and are colored darker gray. The Everglades ecoregion was selected from this 1000-ecoregion map based on 25 primary
environmental variables, so that the map shows the quantitative degree of ‘‘Everglades-ness’’ across the map.
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Quantitative Ecoregions as a Basis for
Sampling Network Design

If we invert the quantitative comparison concept to
consider nonrepresentativeness in the context of an
existing network of sites or sample locations, we can
quantify how well a particular established network is
representative of a larger map that contains it. A net-
work in this sense consists of a geographic constellation
of sites or facilities or can simply represent locations
where samples have been taken. Network analysis
shows how well the sampled environments represent
the rest of the map and identifies the best locations for
new sites or installations. The best location for an
additional site will be in places that are the least well
represented by the network of existing sites.

Instead of a one-to-one centroid comparison like
‘‘Everglades-ness,’’ network analysis entails a one-to-
many centroid comparison in data space. To quantify
network coverage, we determine how different each
ecoregion is from the most similar network site or
sample. For each ecoregion in the map, we find the
Euclidean distance in data space to the single closest
ecoregion that contains a site from the network. As
earlier, this distance is coded to a gray level. Unlike
the ‘‘Everglades-ness’’ maps, however, darker areas
represent areas that are poorly represented by the
existing network. Because this method quantifies
coverage or presence of sites, sites will always sit
within well-represented ecoregions, which will be col-
ored white.

Maps showing the geographic areas represented by
each individual site can be generated, and importance
values can be calculated for each site based on the
marginal representation it adds to the network.
Quantifying the contribution of each site to network
representation can minimize the impact of site elimi-
nation on representation. Finally, a network with a gi-
ven number of sites can be designed that is
theoretically optimal, having the highest possible rep-
resentation of environmental conditions on a map
(given that number of underlying ecoregions).

When submitted to a network analysis based on an
ecoregionalization into the 2000 most different ecore-
gions based on 25 environmental factors, the National
Science Foundation’s Long-Term Ecological Research
(LTER) study site network indicates that additional
LTER sites in the Olympic peninsula and the Klamath,
Sierra Nevada, and Northern California Coast moun-
tains would increase the degree to which the LTER
network represents environments in the United States
(Figure 5). Gulf coastal environments are also poorly
represented by the existing LTER network.

Networks of installations like LTER and AmeriFlux
represent significant investments of research capital.
Sites in most national-scale networks might not be lo-
cated by design, but, instead, by opportunity or logistic
convenience. Network analysis, as an outgrowth of the
quantitative treatment of ecoregions, provides objec-
tive guidance about the design, performance, and
modification of such networks and can improve on
more idiosyncratic design approaches.

Statistical Modeling of Environmental Niche
Envelopes

A variation of cluster-based ecoregionalization uses
Hutchinson’s theoretical underpinnings to forecast a
species’ geographic range in new locations or under
altered environmental conditions (Hargrove and
Hoffman 2000). First, each cell within the species’
environmental range is located in a multidimensional
environmental space. Rather than specifying the
number of ecoregion groups desired, variance-based
clustering is used to define as many fixed-radius, equal-
variance clusters as necessary to ensure that each of the
cells occupied by the species is contained within at least
one cluster. All clusters, when considered together as
multidimensional volumetric pixels, form a model of
the location and shape of the niche within data space.
Selection of the radius (variance) for the clusters
controls the resolution with which the niche envelope
is defined and serves to fill gaps within the Hutchin-
sonian hypervolume.

If the current geographic range data include some
surrogate measures of fitness under each combination
of environmental conditions, this information can be
attached to the clusters defining the niche hypervo-
lume. Hypervolume definitions are used to make geo-
graphic range predictions for new areas by projecting
all map cells in the area into standardized environment
space, then testing each cell to determine if it is within
one of the clusters that define the niche hypervolume.
The mean surrogate fitness associated with the closest
cluster centroid containing a cell is used to predict the
fitness of the species within that cell location in the
new geographic range.

We defined niche hypervolume models for loblolly
pine, Pinus taeda L., and sugar maple, Acer saccharum
Marsh., in terms of the 25 environmental condition
gradients of climatic, physiographic, and soil factors
listed earlier. A within-cluster variance radius of 0.75
standardized units defined a niche model containing
49,324 clusters for P. taeda and 45,490 clusters for
A. saccharum. We tested the niche hypervolume models
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by predicting the current ranges for each species
within the continental United States. Figure 6 com-
pares the current range prediction with the known
current range for these two species.

When the current conditions within the United States
are compared with the niche hypervolume definitions,
the predicted distributions strongly resemble the known
current distributions for both of these tree species
(Figure 6). Areas outside the current geographic distri-
butions of these species were not predicted by the niche
hypervolume model (Figure 6). The current ranges
were successfully predicted by a niche model even when
half of the training data were randomly discarded
(Hargrove and Hoffman 2000). Improvements resulting
from the addition of biotic interaction effects would be
limited to the outer margins of the geographic ranges
for these two species and could be tested by including in
the environmental data set information on the distri-
bution of competitors, pests, or pathogens.

Unlike GAM or CART, cluster-based niche modeling
first builds a model of the niche envelope itself and then

uses this model to predict the species range. The niche
model itself can be studied directly, including ranking
niche breadth along each of the environmental dimen-
sions. Overlap of multiple modeled species can be
studied in environmental space as well as geographic
space. Unlike ENFA, the environmental envelope is
determined without reference to variance within some
arbitrarily larger extent or context. Explicit absence data
are not required, as they are with GAM. Rather than
considering each environmental variable individually in
sequence, cluster-based modeling considers the niche in
a true simultaneous multivariate way, mirroring the way
that organisms experience the environment.

Multivariate Geographic Clustering Through
Time

Multivariate geographic clustering can be used
through time to find any number of geographic areas
with similar combinations of environmental conditions,

Figure 5. Quantitative ecoregions provide a basis for the analysis of sampling networks to show their coverage and represen-
tation. Distance in data space to the closest quantitative ecoregion containing a site quantifies the representation of a network to
each ecoregion in the map. Environments in darker ecoregions are poorly represented by this network, the National Science
Foundation’s Long-Term Ecological Research (LTER) sites. Additional LTER sites in these areas would increase the repre-
sentativeness of this sampling network.
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wherever and whenever they occur. The Multivariate
Clustering process outlined in Figure 1 can also be
applied to a series of maps to visualize shifts in ecore-
gions under a set of dynamic conditions that are
changing through time. Rather than disassembling
individual map cells from a single map, cells from all
maps in a chronological sequence are disassembled and
plotted together in the same data space. In this way,
groups of similar cells are objectively determined across
space and through time. The number of maps in the
chronosequence is unimportant; the Multivariate Spa-
tio-Temporal Clustering (MSTC) process is extensible
to any temporal resolution.

Comparing Past and Present

We used difference maps from a paleovegetation
atlas (Frenzel and others 1992), along with present-day
maps for temperature and precipitation, to produce
spatial estimates of temperature and precipitation that

occurred during the Last Glacial Maximum (LGM),
20,000 to 18,000 years before present. Then, we clus-
tered the LGM and present-day growing condition
maps together in a single pass using MSTC. The maps
that resulted were both simultaneously divided by this
empirical technique into clustered spatio-temporal
combinations of conditions within which the growing
conditions were similar. By examining the LGM and
present-day maps that result, one can readily identify
regions with similar growing conditions, both within
and between the two points in time.

Nine factors deemed important for plant growth
were included in the analysis: elevation, slope, bulk
density of the soil, depth of mineral soil, soil depth to
bedrock, mean annual temperature, mean annual
precipitation, soil water-holding capacity, and mean
annual solar insolation. Spatial patterns of all condi-
tions except temperature and precipitation were as-
sumed to be identical at the LGM to what they are

Figure 6. Variance-based clustering can be used to model the environmental niche hypervolume for a particular species. Niche
models for loblolly pine and sugar maple were tested by predicting current ranges of these species within environments found in
the conterminous United States. Green shows high-fitness habitat, red shows poor habitat, and yellow is intermediate. Predic-
tions for each species agree with optimum habitats, but they overpredict the fringes of the ranges. Niche models can be used to
predict species responses to climatic change.
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Figure 7. A common set of quantitative ecoregions can be found in a sequence of maps changing through time. Environments
at Last Glacial Maximum (LGM) and the present were divided into a common set of 500 ecoregions in terms of nine envi-
ronmental characteristics, shown here in Similarity Colors. The white region along the northern border of the LGM map
represents the southernmost encroachment of glaciers.
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today; topographic factors, like elevation and slope,
and soil physical properties, like density, depth, and
water-holding capacity, were assumed to have been
constant, but were included to further differentiate
growing conditions.

We used MSTC to simultaneously divide the LGM
and present-day maps into 500 clustered spatio-tem-
poral combinations on the basis of the nine input
variables (Figure 7). Both maps are colored using the
Similarity Colors encoding scheme, so that similar
environmental combinations and regions with similar
growing conditions are visible as similar colors, both
within maps and across time.

In Figure 7, Factor 1, ‘‘soil properties,’’ is green,
Factor 2, ‘‘temp & precip,’’ is blue, and Factor 3, ‘‘solar &
water-holding,’’ is red. Black results from small but bal-
anced values of all three factors, and white results from
large but equal values of all three factors. Thus, white
areas in Florida, Texas, and California’s Central Valley
indicate high solar insolation, low water-holding, high
bulk density, deep soils and bedrock, high temperature
and precipitation, low elevation, and gentle slopes.

Figure 8 shows the maps clustered through time
into 50 ecoregions shown with random colors. Because
the same random color scheme is conserved across
both maps, particular clusters can be tracked across
time. For example, the red ecoregion in central Flor-
ida, the Panhandle, and southeastern Texas at the
LGM can be seen to expand tremendously in the
present-day map, growing to fill Florida, most of the
coastal plain, and the eastern half of Texas. The purple
ecoregion that had occupied the coastal plain during
the LGM migrated to northern Texas.

Most of the 500 clusters are present at both times,
but a given ecoregion might have decreased in area,
remained about the same size, or increased in area
across the pair of maps. Changes in the area of each
ecoregion are easily quantified. Unique clustered
combinations that show extreme behavior through
time are of particular interest. For example, in the
LGM map in Figure 9, black areas indicate ecoregions
that went extinct (i.e., shrank to zero area in the
present-day map). These locations during the LGM
had unique combinations of growing conditions that
no longer exist. Similarly, the black areas in the pres-
ent-day map at the bottom indicate the locations of
ecoregions with new combinations of growing condi-
tions; there were no analogs for these environmental
conditions during the LGM.

Comparing the Present with Two Alternative Futures

We compared the present environment of the Uni-
ted States in terms of the 25 variables listed earlier with

two alternative predictions for the future United States
in the year 2099. We implemented forecasts from two
global climate models by altering 16 of the 25 variables
in spatially explicit ways and then used MSTC to find
100 common environmental combinations across this
set of 3 maps. One prediction is from the Hadley
United Kingdom Meteorological Office (UKMO) and
the other is from the Canadian Climate Center (CCC).
We used yearly predictions from 1994 to 2099 from
these two models that were downscaled to 0.5-degree
spatial resolution for the continental United States by
the VEMAP program as part of the US National
Assessment (Kittel and others 1997).

We averaged the VEMAP simulated forecasts
for monthly minimum and maximum temperature,
monthly solar irradiance, and monthly precipitation
over a 5-year interval beginning with 1994, and another
ending with 2099, and took the difference between the
means as the predicted change. Difference layers were
applied to our fine spatial resolution maps of current
conditions within the United States in order to obtain

Figure 8. The same environments as shown in Figure 7, di-
vided into 50 common ecoregions, and shown in random
colors. Colors are conserved, such that the same color indi-
cates the same ecoregion in each map.
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predicted conditions. Because of the inherent spatial
coarseness of the modeled conditions relative to the
high resolution of the present-day conditions, some
‘‘slivers’’ near the coastline of the United States ex-
tended beyond the edge of the predictions. Conditions
inside these small ‘‘slivers’’ remained unchanged.

One hundred common ecoregions delineated in
the triad of maps are compared in Figure 10. Because
the same random color table is used for all maps,
changes in the location of areas affected by different
environmental conditions can be traced between maps.
According to the CCC future scenario, the northeast-
ern United States experiences little change, except in
Pennsylvania. The red cluster of the present coastal
plain divides into a Mississippi valley component and
an Atlantic seaboard component. A green coastal
Texas cluster shrinks to a tiny area near Galveston Is-

land. Severe changes are predicted for California by
the CCC model, making the coarse resolution of the
prediction visible there. In the Hadley UKMO model,
the red coastal plain dissolves into a number of small
remnant clusters around the periphery of a new brown
ecoregion combination according to this forecast. The
medium green coastal Texas ecoregion grows to be-
come the dominant cluster in eastern Texas. Dividing
present and future maps into a common set of ecore-
gions allows for direct comparison, letting the viewer

Figure 9. Changes in the area of a particular quantitative
ecoregion can be tracked through time. Particular ecoregions
can disappear entirely, and ecoregions with new environ-
mental conditions can arise. The top map shows ecoregions
that were present at the LGM but have no analogs today.
Conversely, the bottom map shows new, novel environments
that are present now but had no counterparts at the time of
the LGM.

Figure 10. Quantitative ecoregions can show future climate
changes in terms of present conditions. One hundred com-
mon ecoregions were found within a triad of maps: one
representing present conditions and the other two repre-
senting predictions for the year 2099 from the Hadley and
Canadian Climate Center (CCC) global climate simulations.
Common quantitative ecoregions allow direct comparison of
the two forecasts relative to present conditions.
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see that under either scenario, the future ecoregion
containing Pittsburgh becomes like the current ecore-
gion containing Atlanta, Minneapolis becomes like St.
Louis, and Cleveland becomes like Kansas City.

Convergence Within a Spectrum of Ecoregions

Coarse thematic division of the United States on the
basis of the 25 environmental variables into a few eco-
regions accurately identified the commonly recognized
subregions of the country (Figure 11). Increasingly

finer divisions into more tightly defined ecoregions
soon surpass the classification capabilities of any human
expert.

Although such a spectrum of divisions forms one
sort of hierarchy, some desire a hierarchical framework
of nestable ecoregions (e.g., Bailey 1983) or ecoregions
that can be combined to form some larger biotic,
political, or accounting polygons. Because such arbi-
trary preexisting polygons are unlikely to be equal in
environmental heterogeneity, specifying a preset
number of subregions per parent polygon is not

Figure 11. Multivariate Geographic Clustering can be repeated to create quantitative ecoregions at many levels of division.
Dividing the United States based on 25 climatic, physiographic, and edaphic factors coarsely into a few ecoregions reproduces
intuitively understood regional differences. Dividing finely into many ecoregions quickly surpasses the resolving ability of
experts. All ecoregions from any single map have roughly equal environmental heterogeneity.

Figure 12. Quantitative ecoregions from Figure 11, colored using Similarity Colors. Beyond a certain level of division, all
ecoregion maps converge and cannot be distinguished, even though the polygons underlying these maps are totally different.
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advisable. However, variance-based MSTC, applied
recursively, can be used to generate as many equal-
variance subregions as are appropriate within each
preexisting polygon. Any two subregions have compa-
rable variability, but subregions will reconstitute the
specified parent polygons.

As the number of specified ecoregions increases,
ecoregion maps using Similarity Colors converge rap-
idly to show the same large regional trends in ecological
relationships (Figure 12). If two ecoregionalizations
based on the same environmental conditions are pro-
duced, but one is divided finely into many ecoregions
and the other is divided coarsely into relatively few, the
Similarity Colors versions of the two very different maps
will be indistinguishable from each other at a large
scale. This convergence occurs despite the fact that the
polygons underlying each map are completely differ-
ent—only the color-encoding technique is the same.
The choice of the number of ecoregion divisions is
relatively insensitive; beyond some minimum number
of ecoregions, the same regional ecological patterns are

revealed. Ecologists need only inspect such ecoregion
visualizations to gain insight about regional environ-
mental relationships.

Spatial ‘‘Fences’’ of Instantaneous
Environmental Differentials

Figure 11 shows that some borders consistently
reappear in the same locations across a series of eco-
region divisions. These common or persistent borders
represent geographic locations where ecoregions are
consistently divided in each map at several levels of
overall division. The locations of borders can be
examined across many levels of division to provide a
measure of their robustness.

We call these recurring borders ‘‘fences,’’ and their
height describes the magnitude of the environmental
differential across them. We isolated the borders from
the 15 ecoregion maps in Figure 11 and then added
them together across maps to create ‘‘fences’’ of vary-
ing heights. Higher fences represent frequently recur-

Figure 13. Borders that reoccur between ecoregions at many levels of division can be added together across maps in Figure 11
to create ‘‘fences’’ of varying heights. Fences depict sharp instantaneous linear differences in environment and might not form
closed polygons. Darker gray fences are higher (more different). Portraying the environment as an open gradient punctuated by
fences of linear discontinuities escapes the concept of closed homogeneous ecoregions.
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ring borders and greater putative environmental dif-
ferences. Showing fences taller than a particular height
is equivalent to selecting a particular level of instanta-
neous environmental difference. Fences might not
create closed regions at a particular height, but might
appear as isolated line segments. If we walked around
such a freestanding fence from a point on one side to
the other, we would never experience as dramatic a
shift in the mix of environmental conditions as we
would if we climbed over the fence at that point. A
gradual ecopause might not show a fence at all.

Figure 13 shows persistent ecoregion ‘‘fences’’ in
Tennessee. Darker gray fences are taller (more differ-
ent). The Ridge-and-Valley province, the Cumberland
Plateau, and the Nashville Basin can be seen in terms
of the darkest gray fences. The Appalachian Mountains
show fences that form a regular grid, because the
environmental conditions there are changing rapidly
across space and are poorly represented at this reso-
lution.

Like representativeness contours, fences represent a
way to locate sharp ecotones in the environment.
Fences portray the environment as a continuous gra-
dient with sharp spatial discontinuities or steep differ-
entials exceeding a selected level of heterogeneity.
Classical ecoregions hide within-ecoregion variability,
portraying all locations within a particular polygon as
homogeneous (less than some accepted level of dif-
ference). Fences are more accurate, showing the envi-
ronment as a gradient, but spatially locating ecotones
steeper or sharper than a particular level of difference.
Ecoregions no longer need to be shown as closed,
encompassed polygons, but they can be viewed as open
gradients punctuated with fences of varying heights
representing instantaneous linear discontinuities at
selected levels of difference.

Significance Testing of Ecoregionalizations

Although often demanded, there are no generally
accepted quantitative methods for comparing alterna-
tive ecoregion schemes. Because they simply represent
alternative grouped arrangements, no set of ecoregions
is ‘‘true’’ or ‘‘wrong’’ in a statistical sense. Just as the
correct time cannot be established from a consensus
among many watches, no single set of ecoregions can
be judged objectively as superior. Nevertheless, quali-
tative expert-based ecoregions have become the ac-
cepted standard against which alternative ecoregion
schemes are compared.

A method for testing significant differences among
alternative ecoregion maps would be valuable, yet sta-
tistics appropriate for the pairwise comparison of

alternative categorical maps are lacking, particularly
when those maps could contain different numbers of
categories. Nor does having equal numbers of ecore-
gions necessarily improve a one-to-one comparison.
Significance testing is exacerbated by the absence of
appropriate null models for testing spatial pattern (but
see Hargrove and others 2002). More fundamentally, a
search for consensus among inherently different reg-
ionalizations created for unique purposes might be
neither appropriate nor justified. A theoretical and
technical framework for evaluating differences among
ecoregions remains an open research question [but see
Wolock (2004) and Thompson and others (2004) in
this volume].

Conclusions

Statistical clustering objectively divides a complex
continuous multivariate population into similar group-
ings for easier interpretation. This is precisely the object
of ecoregionalization. We have outlined an empirical
technique that can unambiguously locate, characterize,
and visualize ecoregions and the borders that separate
them, based on a chosen suite of environmental char-
acteristics. Ecoregion maps coded with Similarity Colors
and augmented with sharpness contours represent
integrated portrayals of complex environmental data-
sets that are visually rich in ecological information.

Ecoregions should be created such that all regions
in a single map have similar environmental heteroge-
neity. Some experts use high variability as an explicit
‘‘characteristic’’ to create single ecoregions, producing,
for example, a single region for the Central Appala-
chian Ridge and Valley ecoregion (Omernik 1987). We
suggest that ecoregions be divided on the basis of other
properties, such that the heterogeneity within the re-
gions that are produced is held constant. Our method
would break such chimeric regions into their more
homogeneous constituents (i.e., ridge tops and valley
bottom). It is better to set a level of heterogeneity and
then form ecoregions so that they all abide by this
setting. The statistical clustering process ensures that
all large ecoregions have the same upper limit on
heterogeneity. Any two such ecoregions can be equi-
tably compared, because they were created at the same
level of a variance hierarchy. Equal-variance ecoregions
are meaningful and interpretable, serving the purpose
of ecoregions better than ecoregions produced ad hoc.

Ecoregions defined based on subjective opinions of
an expert are limited by his/her geographic experi-
ence and knowledge. Subjective and qualitative tech-
niques have restricted the application of the classical
ecoregion concept to the realms of human experi-
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ence. This requirement for direct expertise and per-
sonal familiarity with the ‘‘data’’ has been an under-
appreciated but severe constraint for the ecoregion
concept.

Quantitative approaches liberate the ecoregion
concept and allow ecoregions to be expanded into
new realms of multitemporal comparisons, fine spatial
resolutions, global extents, and numerous regional
divisions. We have described machine-generated eco-
regions created through time into the geologic past
and the future—places where no human expert has
been. When the delineation process does not depend
on human expertise, ecoregions can be extended,
even to temporally dynamic fluid environments like
water and air. We are starting to experiment with
oceanic and atmospheric ‘‘ecoregions,’’ and early re-
sults suggest that the same advantages that ecoregions
hold for ecology might be applicable in these other
realms (Hoffman and others 2004).

Indeed, a new set of terms might be needed to de-
scribe this extended ‘‘ecoregion’’ concept. The statis-
tical creation of a set of ecoregions through time
should perhaps be thought of as defining a set of
frequently revisited environmental ‘‘states’’ or ‘‘re-
gimes’’ that represent the actually realized combina-
tions of factors seen within that geographic area during
that interval (Hoffman and others 2004). Quantitative
ecoregions offer an accounting procedure that can
track changes as a geographic location shifts from one
ecoregional state to another through time. This dy-
namic tracking aspect is new to the ecoregion concept
and is of great potential utility.

This new-found extensibility of the ecoregion con-
cept is the direct result of the quantitative approach. A
few basic quantitative principles provide the basis for
all of these products. The ability to calculate ecoregion
centroids representing average or synoptic conditions
allows centroids to be used as holotypes for newly de-
fined ecoregions. Euclidean distance from cells to their
centroids is a quantitative measure of representative-
ness within an ecoregion, and the distance between
centroids is a useful measure of representativeness
across ecoregions. The ability to quantify the Euclidean
similarity of one ecoregion centroid to any other point
or region provides a quantitative foundation for a wide
diversity of formerly unavailable ecoregion-based anal-
yses.

Ecoregionalization remains a rich and complex
process — one with many subtle nuances that requires
much expertise. The process may be sufficiently
complex and irreducible that it is destined to remain
more art than science. Whether bold or naive, we
believe that efforts to capture and to quantify the

techniques of such artists are a worthwhile scientific
pursuit.
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