A cross-scale approach for modeling species local response to climate change

Steve Norman

William Hargrove

Eastern Forest Environmental Threat Assessment Center

Feb 17 2011 EFETAC

How do populations respond to climate change?

The population could not change.

The population could remain, but expand.

The population could persist off site.

The population could shrink or extirpate.

How do populations respond to climate change?

Severity of (climate change) scenario

How do populations respond to climate change?

Severity of (climate change) scenario

The refugia concept

Regional Pleistocene Refugia

- Wisconsin's Driftless Area
- Southern Appalachians
- Wet regions of the Amazon Basin
- The now-submerged coastal plain

Local Topographic Refugia

- Areas with stable habitat
- Areas with low disturbance frequency or severity
- Could be the "source" of source-sink dynamics

Places of....

- safe harbor over generations,
- in situ species site persistence,
- predictable resilience.

Location Northeastern West Virginia

- Satellite view
- Northeastern West Virginia

Elevation

Northeastern West Virginia

Solar Radiation (summer solstice) Northeastern West Virginia

Drainage In(upslope area/tan slope Northeastern West Virginia

Topographic Position (2km radius) Northeastern West Virginia

Topographic Integrated Moisture Index (TIMI) Northeastern West Virginia

Topographic Integrated Moisture Index (30 m) Northeastern West Virginia

Topographic Integrated Moisture Index (240 m) Northeastern West Virginia

Topographic Integrated Moisture Index (960 m) Northeastern West Virginia

TIMI

Low:1

High : 100

Topographic Integrated Moisture Index (1920 m) Northeastern West Virginia

Topographic Integrated Moisture Index (3840 m) Northeastern West Virginia

Anticipated groups across scales

Change in mean moisture index across scales

12 Clusters

Northeastern West Virginia

Change in mean moisture index across scales

Clusters 4,8,9,12 (dry sites in wetter neighborhoods) Northeastern West Virginia

Change in mean moisture index across scales

Clusters 3,5,10,11 (wet sites in dryer neighborhoods) Northeastern West Virginia

Change in mean moisture index across scales

Clusters 1,2,6,7 (little change across scales) Northeastern West Virginia

The three cluster patterns Northeastern West Virginia

Wet in dryer neighborhoods Dry in wetter neighborhoods Little change across scales

NEXT STEPS

Hypotheses related to climate change

- Biodiversity increases toward mesic sites and neigborhoods (habitat and disturbance complexity)
- **Tree growth** responds to climatic extremes according to both site and neighborhood moisture.
- **Phenology** is more stable in mesic sites and neighborhoods.
- Fire ignitions are more common on dryer sites and in dryer neighborhoods.
- Potential topographic refugia are constrained by ownership and land use.

