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Does our wildland fire problem result from 
our past management decisions? 



US Megafires 1997-2012 
(Wildfires larger than 

100,000 ac.)  

http://www.nifc.gov 

US Wildfires, 2000-2012 
(USDA Forest Service RSAC  

and GeoMAC) 



The applied problem and need 

Little Bear Fire, Lincoln National Forest NM, 2012 



Trinity Ridge Fire, Boise National Forest ID, 2012 



Waldo Canyon Fire and Colorado Springs CO, 2012 



The applied problem and need 

Wallow Fire AZ, 2011 
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PART II—Theoretical challenges that can impede forest 
management success 

CYCLICITY 
at the stand scale 
could translate to  

STABILITY 
at the landscape 

scale 

A typical cyclical disturbance-succession model (at the stand-scale) 



“after all, one does not step 
into the same river twice. 
waters disperse and come 

together again ... they keep 
flowing on and flowing away” 

Heraclitus 
c. 535 – c. 475 BCE 



DRIVERS of STABILITY in the fire environment 
• Evolutionary-scale species responses to fire 
• Evolutionary-scale competitive relationships among species 
• Fuel accumulation and succession 
• Consistency of climate (fire seasonality, microclimate) 
• Topography  
• Consistent management regimes 
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DRIVERS of STABILITY in the fire environment 
• Evolutionary-scale species responses to fire 
• Evolutionary-scale competitive relationships among species 
• Fuel accumulation and succession 
• Consistency of climate (fire seasonality, microclimate) 
• Topography  
• Consistent management regimes 

DRIVERS of FLUX in the fire environment 
• Inconstant human influence: 

• changing ignition rates or patterns 
• fire management (e.g., fire suppression) 
• land management (e.g., grazing, logging) 

• Introductions of non-native species  
• Climate change 
• Complex disturbance interactions 

PART II—Theoretical challenges that can impede forest 
management success 



Tamarix spp. Buffelgrass  

Cheatgrass 

Cogongrass 



Complex disturbance interactions (drainage, logging, hurricanes, repeated fires)  
in the Okefenokee NWR, Georgia 



Complex disturbance interactions (drainage, logging, hurricanes, repeated fires)  
in the Great Dismal Swamp NWR, Virginia 



Complex disturbance interactions (beetle kill, drought, wildfire) in the interior West 



Complex disturbance interactions (blowdown, wildfires) in the 2012 Wenatchee  
Fire, Washington 
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• Normalized Difference Vegetation Index 
(NDVI) from MODIS 

• 46 periods per year (8-day intervals) 
• 2000 to present 
• 232 meter resolution 
• Includes NDVI time series and change maps 

http://forwarn.forestthreats.org 
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PART III—Efficient coarse-filter landscape monitoring 
Available approaches and datasets 



PART III—Efficient coarse-filter landscape monitoring 
Phenological signatures of deciduous forest dominated pixels 

a 

Buncombe Co. NC 
Beech-Maple 

Transylvania Co. NC  
Oak 

Johnson Co. AR 
Oak 

Centre Co. PA 
Oak-Maple 

Kanabec Co. MN 
Oak-Maple 

Erath Co. TX 
Oak  

Mills Co. IA 
Oak 

Hamilton Co. NY 
Maple Beech Birch 

Sacramento Co. CA 
Bottomland hardwood 



PART III—Efficient coarse-filter landscape monitoring 
Phenological signatures of conifer forest dominated pixels 

Del Norte Co. CA 
Old growth Redwood 

Trinity Co. CA 
Old growth Mixed Conifer 

Linn Co. OR (west Cascades) 
Second growth Douglas Fir 

Clear Creek Co. CO 
Lodgepole Pine 

SD (Black Hills) 
Ponderosa Pine 

Greenlee Co. AZ 
Ponderosa Pine 

Marion Co. FL (Ocala NF) 
Mixed pine 

Walton Co. FL (Eglin AFB) 
Longleaf Pine 

Randolph Co. WV 
Appalachian Spruce-Fir 



PART III—Efficient coarse-filter landscape monitoring 
Phenological signatures of grass dominated pixels 

McDonough Co. IL (corn) 

Butler Co. KS (Flint Hills) Cherry Co. NE (Sand Hills) Owyhee Co. ID (cheatgrass) 

Whitman Co. WA (Palouse) 

Pima Co. AZ (invasives) 

Miner Co. SD (wheat) 

Andrews Co. TX (range) Salem Co. NJ (Coastal marsh) 



Maximum NDVI 
Minimum NDVI 
Mean NDVI 
Median NDVI 
 
Percentiles of the annual distribution 
Amplitude of NDVI (of extremes)  
NDVI Difference (between thresholds) 
Duration above some threshold 
Area under the growing season curve 

Deciduousness 

Evergreenness 

Time of year 

N
D

V
I 

Key Measures for Vegetation Change  
Associated With Wildland Fire: 

 

(1) LIVING BIOMASS 
       (median NDVI) 
(2) CONIFER (EVERGREEN) FRACTION 
       (~25th %ile of annual distribution) 
(3) GRASS FRACTION 
       (peakedness of upper distribution) 

PART III—Efficient coarse-filter landscape monitoring 
Potential measures of fire effects and desired vegetation 
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PART III—Efficient coarse-filter landscape monitoring 
The max., median and min. NDVI for Willows CA non-native grasslands 

(The landscape mean of 9,345 MODIS pixels) 

Note the inter-annual volatility of this measure typically caused by climate variation 
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PART III—Efficient coarse-filter landscape monitoring 
Phenological peakedness as the difference between the max and 80th 
percentile of the calendar year distribution 

Phenological peakedness (departure) 



PART III—Efficient coarse-filter landscape monitoring 
Phenological peakedness as the difference between the max and 85th 
percentile of the 2002 fiscal year distribution 



PART III—Efficient coarse-filter landscape monitoring 
National Land Cover Dataset (NLCD 2006): grassland/herbaceous, 
pasture/hay, cultivated crops  
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ForWarn 
Aug. 12, 2013 
NDVI Change from 
All-Year Max Baseline 

California 

Oregon 

Nevada 



ForWarn 
Aug. 12, 2013 
NDVI Change from 
All-Year Max Baseline 
with 2000-2012 wildfire  
Perimeters (MTBS-GeoMac) 

California 

Oregon 

Nevada 



PART IV—Predicting long-term fire effects 



Date: August 12, 2013 
Baseline: Max of all years 

OR 

CA 

Biscuit Fire 
2002 



Mean observed MODIS NDVI for the 2002 BISCUIT FIRE and adjacent lands 

In the red, 37,288 pixels are averaged (y) for each  
of 552 periods (x). This is 20,582,976 values. 
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Change over time across 
percentiles of the 
annual NDVI distribution 
for the BISCUIT FIRE 
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Percent change in the Evergreen Fraction for the 2002 BISCUIT FIRE 

<-70 
-69.9 - -60 
-59.9 - -50 
-49.9 - -40 
-39.9 - -30 
-29.9 - -20 
-19.9 - -10 
-09.9 – 0 
> 0  

2003 2011 

Percent change in  
25th  percentile 
from 2000-01 
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1 – 15 years 
16 – 30 years 
31 – 45 years 
46 – 60 years 
61 – 75 years 
76 – 100 years 
Unobserved; 0-10% loss 
Unobserved; 11-25% loss 
Unobserved; >25% loss 

Predicted Recovery 

PART IV—Predicting long-term fire effects 

Predicted years to NDVI recovery for the 
BISCUIT FIRE based on change in the 50th 
percentile of calendar year distributions 
(annual medians), 2004-2011 



Date: August 12, 2013 
Baseline: Max of all years 

Whitewater- 
Baldy 2012 

Wallow 2011 

Rodeo-Chediski 2002 

AZ NM 



Mean observed MODIS NDVI for the RODEO-CHEDISKI FIRE and adjacent lands 

Note: For only this one of the three fires, adjacent unburned values were not simply from the grid box surrounding the fire, but only those cells with 
mean 2000-01 values GTE 0.50 because areas within the box of this fire include low elevation grasslands, not mountain forests. Without this, the mean 
of the adjacent is close to 0.45 not 0.55 as it is with this selective adjustment. 
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Change over time across 
percentiles of the annual 
NDVI distribution for the 
RODEO-CHEDISKI FIRE 
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Change in 25th Percentile 
2000-01 to 2011 2011 

% change 
<-70 
-69.9 - -60 
-59.9 - -50 
-49.9 - -40 
-39.9 - -30 
-29.9 - -20 
-19.9 - -10 
-09.9 – 0 
> 0  

Change in 25th Percentile 
2000-01 to 2003 

2003 

Percent change in the Evergreen Fraction for the 2002 RODEO-CHEDISKI FIRE 
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PART IV—Predicting long-term fire effects 
Predicted years to NDVI recovery for the RODEO-CHEDISKI FIRE based on change 
in the 50th percentile of calendar year distributions (annual medians), 2004-2011 



Date: August 12, 2013; 
Baseline: Max of all years 

Waldo 
Canyon  

2012 

Hayman 
Fire  
2002 



% change 
<-70 
-69.9 - -60 
-59.9 - -50 
-49.9 - -40 
-39.9 - -30 
-29.9 - -20 
-19.9 - -10 
-09.9 – 0 
> 0  

Change in 25th Percentile 
2000-01 to 2003 

2003 

Change in 25th Percentile 
2000-01 to 2011 

2011 

Percent change in the Evergreen Fraction for the 2002 HAYMAN FIRE 
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Mean MODIS NDVI for the 2002 HAYMAN FIRE and adjacent lands 
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Change over time  
across percentiles of the 
annual NDVI distribution 
for the HAYMAN FIRE, 
Colorado. 
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1 – 15 years 
16 – 30 years 
31 – 45 years 
46 – 60 years 
61 – 75 years 
76 – 100 years 
Unobserved; 0-10% loss 
Unobserved; 11-25% loss 
Unobserved; >25% loss 

Predicted Recovery 

PART IV—Predicting long-term fire effects 
Predicted years to NDVI recovery for the HAYMAN FIRE based on change in the 
50th percentile of calendar year distributions (annual medians), 2004-2011 



Summary 
 

(1) High frequency, moderate resolution MODIS NDVI provides 
insights into short and long-term fire effects. 
 

(2) Recovery to pre-fire or progress toward desired conditions 
can be predicted.  
 

(3) This approach also provides a uniform coarse filter 
mechanism for ecological process monitoring. 
 

(4) This functions for many other disturbances, and therefore 
for coarse aspects of disturbance interactions including 
cumulative effects from causes, both indigenous and novel. 

http://forwarn.forestthreats.org 

http://forwarn.forestthreats.org/

