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Abstract

Resource and logistical constraints limit the frequency and extent of envi-
ronmental observations, particularly in the Arctic, necessitating the develop-
ment of a systematic sampling strategy to maximize coverage and objectively
represent environmental variability at desired scales. Described is a quantita-
tive methodology for stratifying sampling domains, informing site selection,
and determining the representativeness of measurement sites and networks.
Multivariate spatiotemporal clustering was applied to down-scaled general
circulation model results and data for the State of Alaska at 4 km2 resolution
to define multiple sets of ecoregions across two decadal time periods. Maps
of ecoregions for the present (2000–2009) and future (2090–2099) were pro-
duced, showing how combinations of 37 characteristics are distributed and
how they may shift in the future. Representative sampling locations are iden-
tified on present and future ecoregion maps. A representativeness metric was
developed, and representativeness maps for eight candidate sampling locations
were produced. This metric was used to characterize the environemntal simi-
larity of each site. This analysis provides model-inspired insights into optimal
sampling strategies, offers a framework for up-scaling measurements, and pro-
vides a down-scaling approach for integration of models and measurements.
These techniques can be applied at different spatial and temporal scales to
meet the needs of individual measurement campaigns.
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1 Introduction

The Arctic contains vast amounts of frozen water in the form of sea ice, snow,
glaciers, and permafrost. Extended areas of permafrost in the Arctic contain soil
organic carbon that is equivalent to twice the size of the atmospheric carbon pool,
and this large stabilized carbon store could be released by widespread thawing of
permafrost, resulting in a positive feedback to climate warming [1]. The Inter-
governmental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4)
has documented strong evidence for warming of the Earth’s climate over the last
century and has attributed the increase in global temperatures primarily to the
rising anthropogenic greenhouse gas burden [2]. Climate warming is projected to
continue with broad implications for sensitive ecosystems and globally important
climate feedbacks [3]. Warming is projected to be especially pronounced at high
latitudes and accompanied by significant regional impacts. Evidence of Arctic-wide
responses is already being observed [4]. Despite these potential implications, the
Arctic has a limited record of low density observations. The The Arctic Cimate
Impact Assessment (ACIA) [5] emphasized the need for studies of the complex and
interacting processes of the atmosphere, sea ice, ocean, and terrestrial systems to
improve the interpretation of past climate and projections of future climate. Com-
mittee on Designing an Arctic Observing Network [6] identified critical needs and
gaps for observations in the Arctic. It recommended an Arctic Observing Network
to satisfy current and future scientific needs and offered recommendations on key
physical, biogeochemical, and human dimensions variables to monitor.

Conducting systematic and continuous field observations and long term monitor-
ing are challenging, particularly in the Arctic. Resource and logistical constraints
limit the frequency and extent of observations, necessitating the development of a
systematic sampling strategy that objectively represents environmental variability at
the desired spatial scale. Statistical design of the network, particularly the location
of sampling sites, is critical under such harsh working conditions to maximize the
representativeness of the sampled data, given a fixed number of sampling locations.
Required is a methodology that provides a quantitative framework for stratifying
sampling domains, informing site selection, and determining the representativeness
of measurements. This information is required for up-scaling and extrapolating point
measurements to a larger landscape with similar environmental characteristics. This
study addresses these needs by developing a quantitative methodology, based on the
concept of ecoregions, for objectively delineating sampling domains, identifying op-
timal sampling locations for these domains, and quantifying representativeness of
sites and measurements. This methodology is applied at the landscape scale to in-
form the design of a sampling network for the U.S. Department of Energy’s Next
Generation Ecosystem Experiment (NGEE) Arctic project in the State of Alaska.
The National Science Foundation’s (NSF’s) National Ecological Observatory Net-
work (NEON) adopted an objective, data-based methodology to define 20 optimal
sampling domains across the conterminous United States [7, 8]. Described here is
an extension of that same methodology applied both across space and through time
to support identification of measurement sites and provide a framework for scaling
measurements and model parameters for the NGEE Arctic project.
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2 Delineation of Quantitative Ecoregions

2.1 Ecoregions

Ecoregions have been widely used to stratify geographic domains into nearly
homogeneous land areas with respect to their geophysical, biological, and climatic
characteristics. Since ecoregions are designed to correspond well with biome distri-
butions and species ranges, they are frequently used as a framework for studying
ecosystem structure and function. Qualitative and generalized ecoregion maps of
the United States and the world have traditionally been developed by experts for
studying ecosystem behavior or to define units for land management [9, 10, 11, 12].
Hargrove and Hoffman [13] used cluster analysis for quantitative delineation of ecore-
gions using a set of nine environmental characteristics for the conterminous United
States at a resolution of 1 km2, and subsequently demonstrated its application for
sampling network design, environmental niche modeling, and comparison of global
model predictions [14, 15]. Krohn et al. [16] applied clustering to create hierarchical
biophysical regions for Maine at a 21 km2 resolution. Jensen et al. [17] used agglom-
erative clustering for hierarchical classification of sub-watersheds in the Columbia
River Basin using 19 indirect biophysical variables. In this study, k-means cluster
analysis was used to delineate ecoregions having nearly equal within-region hetero-
geneity.

2.2 Multivariate Spatiotemporal Clustering (MSTC)

The k-means algorithm [18] clusters a dataset of n observation vectors ( ~X1, ~X2,

. . . , ~Xn) into a user-selected number of groupings or clusters (k). The algorithm be-
gins by calculating the Euclidean distance of each observation to the initial centroid
vectors (~C1, ~C2, . . . , ~Cn) and classifies or assigns each observation to its nearest
centroid. Each centroid vector is recalculated as the vector mean of all observations
assigned to it. This classification and re-calculation process is iteratively repeated
until fewer than some fixed proportion of observations change their cluster assign-
ment between iterations. In the algorithm used here, convergence is assumed once
fewer than 0.05% of the observations change cluster assignments. The results of the
k-means algorithm are sensitive to the choice of initial centroids. Various heuristics
may be employed for their selection, such as choosing initial centroids to have an
even distribution within data space or to be spread along the edges of the distribu-
tion of observations. In this study, a multi-stage refinement method based on the
work of Bradley and Fayyad [19] is employed.

For geographic or spatial stratification applications, observation vectors consist of
map cells, the dimensions of which are the biological or geophysical characteristics or
variables under consideration. For spatiotemporal partitioning, observation vectors
consist of map cells at different time periods. Hoffman and Hargrove [20] developed a
parallel version of the k-means algorithm for use on clusters of inexpensive personal
computers [21], and this code was used in a meta-computing environment to cluster
data using multiple supercomputers across the Internet [22]. Hoffman et al. [23]
later implemented improvements to accelerate convergence, handle empty cluster
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cases, and obtain initial centroids through a scalable implementation of the Bradley
and Fayyad [19] method. Kumar et al. [24] extended this work to develop a fully
distributed, highly scalable k-means parallel clustering tool for analysis of very large
data sets, which was employed in the study presented here.

2.3 Input Data Layers

This analysis used a set of 37 environmental characteristics, or variables, shown
in Table 1, from down-scaled general circulation model (GCM) results and observa-
tional data for the State of Alaska at a nominal resolution of 2 km × 2 km. These
data were used to define a collection of ecoregions at multiple levels of division across
two time periods for Alaska. Selection of these 37 variables reflects a compromise
between desirability and availability. Model results were averaged for the present
(2000–2009) and the future (2090–2099). This analysis combined temperature, pre-
cipitation, and related bio-climatic projections from a five-model composite data
set of down-scaled GCM results for the A1B emissions scenario [25] described by
Walsh et al. [26]; corresponding snow and permafrost projections from the Geophys-
ical Institute Permafrost Lab (GIPL) 1.3 permafrost dynamics model forced with
the composite GCM results [27]; limnicity data based on the National Hydrography
Dataset (NHD), pre-processed by Arp and Jones [28]; and elevation data from the
Shuttle Radar Topography Mission (SRTM). The same limnicity and elevation data
were used for both time periods. Because the units of measurement differ between
variables, all data were standardized such that each variable had a mean of zero
and a standard deviation of one prior to clustering to equalize the contribution from
each predictor.

2.4 Alaska Ecoregions

Nowacki and Brock [29] and Gallant et al. [30] produced ecoregion maps for the
State of Alaska using two different expert-based methodologies, strongly focused
on land form. Later, Nowacki et al. [31] produced a “unified” ecoregion map—
combining the two expert-based techniques—by considering limited data and in
consultation with experienced ecologists, biologists, geologists, and regional experts.
While useful for some purposes, such qualitative maps are based on the subjective
expertise of the person or group developing them and suffer from various limitations
[32, 33]. The question of whether ecoregions can or should be developed using quan-
titative statistical methods or should rely upon human expertise has been a matter
of debate among geographers [34]. In this study, MSTC was applied to derive ecore-
gions based on climate and topographic factors for the present and the future at
multiple levels of division. The climate and topographic factors discussed in §2.3
describe the environmental conditions of each map cell and are the most important
drivers controlling vegetation and primary production. Thus, groupings or clusters
of similarly characterized map cells delineated based on these variables define unique
ecoregions. As demonstrated by Hargrove and Hoffman [14], both present and pro-
jected future climate factors were included in the same analysis so that groups of
similar cells were objectively determined across space and through time. MSTC
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Table 1: The 37 characteristics or variables, averaged for 2000–2009 and 2090–2099,
used in Multivariate Spatiotemporal Clustering (MSTC) for the State of Alaska.

Number
Description or Name Units Source

Monthly mean air temperature 12 ◦C GCM
Monthly mean precipitation 12 mm GCM

Day of freeze mean day of year GCM
standard deviation days

Day of thaw mean day of year GCM
standard deviation days

Length of growing season mean days GCM
standard deviation days

Maximum active layer thickness 1 m GIPL
Warming effect of snow 1 ◦C GIPL
Mean annual ground tempera-
ture at bottom of active layer 1 ◦C GIPL

Mean annual ground surface
temperature 1 ◦C GIPL

Thermal offset 1 ◦C GIPL
Limnicity 1 % NHD
Elevation 1 m SRTM

provides a basis for comparison of environmental conditions in the future with those
in the present. Ecoregions constructed through this analysis may grow or shrink in
spatial area and may shift across the landscape. At high levels of division or under
extreme environmental change conditions, some present-day ecoregions may become
extinct in the future (i.e., shrink to zero spatial area), while others may exist only
in the future (i.e., have no analog in the present). This quantitative delineation of
ecoregions across space and through time facilitates assessment of the magnitude of
change between present and future environmental conditions and enables the evalu-
ation of the ecological implications of climate change scenarios. From a conservation
perspective, this methodology maps changing habitats and species at risk from cli-
mate change [35]. From a field sampling perspective, this methodology identifies
regions fostering potentially vulnerable ecosystems or supporting large and vulner-
able carbon stores that may be sensitive to climate change [36, 37]. Such ecoregions
warrant intense observation and benefit from careful, quantifiable, and defensible
sampling network design strategies.

Expert-derived ecoregion maps are static and have boundaries based on subjec-
tive consideration of geographic properties and expert judgment. In contrast, statis-
tically derived ecoregions can vary with time and are delineated in the data space or
state space representing all the characteristics under consideration. Moreover, the
state space resolution can be varied by selecting different values of k, the level of
division in the clustering algorithm. Figures 1(a) and 1(b) contain maps of the 10
quantitatively defined, most-different Alaskan ecoregions for the present and future,
respectively. The cluster centroid of each ecoregion represents the mean value of all
the characteristics or state variables for that ecoregion. Tables 2 and 3 show the 10
centroid values of all 37 state variables, as well as the land area and percent land
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area for both the present and future time periods. Increasing the selected number
of clusters in the k-means algorithm allows the definition of a larger number of more
specifically defined, less generalized ecoregions. For example, Figures 1(c) and 1(d)
contain maps of the 20 quantitatively defined, most-different Alaskan ecoregions for
the present and future, respectively. The 20 cluster centroids values are shown in
Tables 4 and 5, as well as the land area and percent land area for both the present
and future time periods. By continuing to increase the level of division, the state
space resolution can be further increased. Maps of Alaska were produced for k = 5,
10, 20, 50, 100, 200, 500, and 1000 ecoregions [38]. To demonstrate the additional
state space resolution provided by higher levels of division, maps of 50 and 100
ecoregions for the present and future are shown in Figure 2. Since cluster centroids
are calculated in the 37-dimensional state space, they may not actually exist in ge-
ographic space. However, the map cell closest to the calculated centroid in state
space is easily identified. This cell is called the realized centroid for the ecoregion,
and it best represents the combination of environmental conditions for the entire
ecoregion. The location of these representative realized centroids is indicated by the
blue dot in each ecoregion in Figures 1 and 2.
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Table 6: Spatial correspondence between the 10 quantitatively defined MSTC Ecore-
gions and the eight dominantly associated Level 2 ecological groups consisting of the
32 ecoregions defined by Nowacki et al. [31].

% area overlap % area overlap
MSTC Nowacki Level 2 of MSTC of Nowacki

Ecoregion Ecological Group on Nowacki on MSTC

1 Coastal Rainforests 85.62 30.83
2 Bering Tundra 58.69 78.77
3 Arctic Tundra 95.75 93.44
4 Bering Taiga 47.66 70.63
5 Intermontane Boreal 78.70 81.58
6 Aleutian Mountains 41.31 22.23
7 Aleutian Mountains 64.18 2.94
8 Coastal Rainforests 96.56 27.46
9 Alaska Range Transition 59.99 35.23

10 Alaska Range Transition 64.38 9.19

Ecoregions defined quantitatively may or may not correspond well to expert-
derived ecoregions [39]. Table 6 shows the spatial overlap or correspondence between
the 10 quantitatively defined MSTC Ecoregions and the eight dominantly associated
Level 2 ecological groups consisting of the 32 ecoregions defined by Nowacki et al.
[31]. As expected, strongly distinctive or orographically constrained ecoregions, like
Arctic Tundra, have a high degree of correspondence. As shown in Table 6, nearly
96% of MSTC Ecoregion 3 overlaps with the Arctic Tundra Level 2 ecological group
defined by Nowacki et al. [31], and 93% of their Arctic Tundra group overlaps with
MSTC Ecoregion 3. Meanwhile, MSTC Ecoregion 4 intersects multiple Level 2
ecological groups but most dominantly corresponds to the Bering Taiga group with
less than 48% overlap. Because 10 MSTC Ecoregions are intersected with eight Level
2 ecological groups, MSTC Ecoregions appear to subdivide two Level 2 ecological
groups and the percent area overlap of MSTC Ecoregions on Level 2 ecological groups
is usually larger than the percent area overlap of Level 2 ecological groups on MSTC
Ecoregions. A quantitative goodness-of-fit method that explicitly accounts for the
degree of spatial correspondence between categorical maps with different numbers
of categories [39] can be used to further explore this sort of correspondence analysis.

Alaska exhibits wide ranging heterogeneity in environmental conditions, which
can be resolved by selecting larger numbers of clusters in the MSTC algorithm.
While MSTC is a non-hierarchical procedure, inherently hierarchical relationships
within the combinations of state variables automatically emerge when increasing
the level of division. For example, at a level of division of k = 10, the North Slope
of Alaska is represented by a single ecoregion (#3) corresponding to the Arctic
Tundra Level 2 ecological group (Figure 3(a)). The North Slope is divided into two
ecoregions (#5 and #13) corresponding to the Brooks Range and Beaufort Coastal
Plains ecoregions defined by Nowacki et al. [31] at a level of division of k = 20
(Figure 3(b)). By further increasing the level of division to k = 50, the North Slope
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(a) At k = 10, the North Slope
is occupied by MSTC Ecoregion
#3, which corresponds to the
Arctic Tundra Level 2 ecologi-
cal group.

(b) At k = 20, the North
Slope is occupied by MSTC
Ecoregion #5, corresponding to
the Brooks Range ecoregion;
and MSTC Ecoregion #13,
corresponding to the Beaufort
Coastal Plains ecoregion.

(c) At k = 50, the North
Slope is occupied by MSTC
Ecoregion #32, corresponding
to the Intermontane Boreal eco-
logical group; MSTC Ecore-
gions #33 and #34, corre-
sponding to low- and high-
elevation subsets of the Brooks
Range ecoregion; MSTC Ecore-
gion #35, which corresponds
to the Brooks Foothills ecore-
gion; and MSTC Ecoregion
#40, which corresponds to the
Beaufort Coastal Plains ecore-
gion.

Figure 3: A hierarchy of increasingly specific ecoregions for the North Slope of
Alaska emerge by increasing the level of division in the MSTC algorithm. MSTC
cluster numbers are shown and the spatially corresponding Level 2 ecological group
or ecoregion defined by Nowacki et al. [31] is identified.

is divided into five different ecoregions (#32, 33, 34, 35, and 40) corresponding to
the Intermontane Boreal ecological group, high- and low-elevation Brooks Range,
Brooks Foothills, and Beaufort Coastal Plains ecoregions defined by Nowacki et al.
[31] (Figure 3(c)). Even more specialized ecoregions can be resolved by further
increasing the desired level of division in the MSTC algorithm (Figure 2).

3 Mapping Sensitive Environments

Evidence of environmental change in the Arctic and resulting impacts on aquatic
productivity and biodiversity, terrestrial ecosystems, and local economies were high-
lighted by Anisimov et al. [3]. Increased shrub abundance has been observed in
Alaska [40, 41, 42]. During the last 50 years, the tree line along the Arctic to sub-
Arctic boundary has moved 10 km northward and 2% of Alaskan tundra on the
Seward Peninsula has been replaced by forests. Ecoregions derived for the present
and future (Figure 1) show a similar northward shift, indicating a dramatic change
in environmental conditions due to a warming climate by the end of this century, as
projected by models using the A1B emissions scenario [25]. By tracking changes in
the spatial area and migration of ecoregions statistically derived from a hypervol-
ume of environmental gradients [43], this objective approach for mapping landscapes
undergoing environmental change can be applied to predict shifts in species ranges
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Figure 4: Percent area distribution of 10 ecoregions during the present (2000–2009)
and future (2090–2099) periods. Mean values for the state variables of each ecoregion
are contained in Tables 2 and 3.

and constrain estimates of changes in the carbon balance of sensitive environments.
Figure 4 shows the percent area distribution of each ecoregion, at the k = 10

level of division, for the present and future time periods. Correspondence between
these MSTC Ecoregions and Nowacki et al. [31] Level 2 ecological groups is shown
in Table 6. A significant decrease in the area of Ecoregion #3, representing most
of the North Slope of Alaska as shown in Figure 3(a), is observed. This contempo-
rary Arctic Tundra environment is predicted to be reduced to about 0.78% of its
present area by the end of the century. About 76% of the area will be replaced
by conditions typical of the warmer Bering Tundra environment (Ecoregion #2).
Meanwhile, the Bering Tundra (Ecoregion #2) environment moves northward by
the end of the century and more than doubles in areal extent. About 70% of its cur-
rent area, especially over the Seward Peninsula, will change to conditions similar to
contemporary Bering Taiga (Ecoregion #4). In the future, the Bering Taiga (Ecore-
gion #4) environment decreases in extent by 32% and migrates northward. Under
increased temperatures and reduced permafrost conditions, the present-day Aleu-
tian Mountains (Ecoregion #7) environmental conditions are predicted to replace
65% of Bering Taiga (Ecoregion #4), and Alaska Range Transition (Ecoregion #10)
environmental conditions are expected to replace 28% of Bering Taiga (Ecoregion
#4). Aleutian Mountain (Ecoregion #7) and Alaska Range Transition (Ecoregion
#10) environments, which exist in the southern coastal regions of Alaska, are ex-
pected to grow in extent northward and occupy a larger portion of Alaska. Alaska
Range Transition (Ecoregion #10) environmental conditions are also expected to
replace about 75% of the Intermontane Boreal (Ecoregion #5) environment in the
future, which will be reduced to 18% of its current area by the end of the century.
While similar trends of large scale northward migrations and changes in the areal
extents of the environments discussed above are observed at 20 and higher levels
of divisions, these ecoregion refinements highlight the changes that are occurring in
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Figure 5: Percent area distribution of 20 ecoregions during the present (2000–2009)
and future (2090–2099) periods. Mean values for the state variables of each ecoregion
are contained in Tables 4 and 5.

smaller, more uniquely defined environments.
Figure 5 shows the percent area distribution of k = 20 ecoregions for the present

and future time periods. In addition to areal extent changes and geographic re-
distribution of ecoregions between the present and future, at this level of division
one present-day ecoregion ceases to exist in the future (i.e., becomes extinct) while
another ecoregion exists only in the future (i.e., is born) and has no analog in the
present. Ecoregion #13 (Figure 6(a)), which represents the most northern portion
of Arctic Tundra on the North Slope, becomes extinct in the future due to pro-
jected climate change. Ecoregions #2 and #17, which presently occupy the Seward
Peninsula and nearby coasts (Figure 6(b)), replace Ecoregion #13 in the future (Fig-
ure 6(c)). Approximately 46% of the area of Ecoregion #13 is replaced by Ecoregion
#2 and 53% is replaced by Ecoregion #17. Under this climate change scenario, the
ecoregions replacing the extinct region in the future have characteristically higher
precipitation, higher temperatures, earlier thaw dates, later freeze dates, a longer
growing season, increased active layer depth, and higher ground surface tempera-
tures (Tables 4 and 5). At the end of the century, much of the Seward Peninsula and
nearby coasts are occupied by an entirely new combination of environmental condi-
tions, defined by Ecoregion #1, which has no analog in the present (Figure 6(d)).
This new ecoregion, which appears only in the future time period, represents an en-
vironment with higher precipitation and temperature, an increased growing season
length, increased active layer depth, and higher soil temperatures (Tables 4 and 5).

As the level of division is increased in the MSTC algorithm, more specialized
ecoregions are delineated. As a result, the number of present-day ecoregions that
become extinct and the number of non-analog future ecoregions will both increase.
The MSTC procedure was applied for k = 5, 10, 20, 50, 100, 200, 500, and 1000 levels
of division [38]. Identification of regions representing new combinations of environ-
ment conditions that did not previously occur together is important for forecasting
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1000 km

(a) Ecoregion #13 (present), the coldest
Arctic Tundra on the North Slope, ceases
to exist in the future.

1000 km

(b) Ecoregions #2 and #17 (present)
are limited to the Seward Peninsula and
nearby coasts.

1000 km

(c) Ecoregions #2 and #17 (future) have
moved northward, displacing Ecoregion
#13 (present) on the North Slope.

1000 km

(d) A new Ecoregion #1 (future) occupies
much of the Seward Peninsula and nearby
coasts and has no analog in present.

Figure 6: At k = 20, MSTC Ecoregions migrate across the landscape, one becomes
extinct, and one comes into existence between the present and future.

species range distributions, conservation planning, and climate change impacts on
biodiversity [44].

4 Site Selection

Selection of sampling locations for long term monitoring of ecosystem properties
and processes should be guided by an objective, quantitative, systematic, and de-
fensible methodology. Instead, sampling locations in large-scale networks have often
been established in opportunistic, political, or logistically-driven ways, resulting in
unquantified representation of heterogeneity, biased sampling, uncharacterized un-
certainty, and undirected network growth. Finite resources and logistical constraints
limit the spatiotemporal frequency and extent of environmental observations, neces-
sitating the development of a systematic sampling strategy to objectively represent
environmental variability at the desired spatial scale. An appropriately designed ob-
servation strategy should be employed to quantitatively delineate sampling domains,
sites, and frequencies. The National Science Foundation’s (NSF’s) National Ecolog-
ical Observatory Network (NEON) adopted the objective, data-based methodology
described above to define 20 optimal sampling domains across the conterminous
United States [7, 8]. Accurate characterization of the landscape and translation of
data collected in the field and laboratory into useful datasets, process algorithms,
and model parameters requires classification of the landscape into discrete units
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based on ecological, hydrological, and geological properties. In much the same way
that ecologists develop ecoregions, geologists often classify landscape areas into geo-
morphological units based on their geophysical and hydrological features. For com-
plex and evolving landscapes featuring interacting vegetation and geomorphological
dynamics responding to changes in climate, such as in the Arctic, these stratification
concepts may be unified to produce biogeomorphic units at relevant spatial scales
for landscape characterization, identification of ecological and geomorphological pro-
cesses, assessing the representativeness of measurements, and providing a framework
for scaling measurements and model parameters to larger domains.

An important aspect of site selection and the up- and down-scaling approach to
integration of models, observations, and process studies is the estimation of repre-
sentativeness. The MSTC methodology described above for landscape characteri-
zation offers useful metrics for indicating the representativeness of sites, measure-
ments, and model parameters. Hargrove et al. [45] described this technique for
understanding the representativeness of a sampling network based on a suite of en-
vironmental gradients considered to be useful proxies for the characteristics being
measured. Maps identifying poorly represented regions can be produced, suggesting
where new measurements should be taken to maximize sampling network cover-
age. As discussed in §2.4, since the cluster centroid represents the mean value of
all the state variables in an ecoregion, the realized centroid for an ecoregion is the
location that best represents the combination of environmental conditions of the en-
tire ecoregion. Therefore, statistically defined realized centroids, indicated by blue
dots in each ecoregion in Figures 1 and 2, are the optimal sampling locations for
each ecoregion. Logistical constraints—including accessibility, availability of electric
power and telecommunications infrastructure, and geologic stability—may prevent
establishment of sampling sites at such optimal locations, particularly in an Arctic
environment. Nevertheless, the MSTC Ecoregion framework provides a means for
quantifying the representativeness of measurements taken at sub-optimal locations,
either within an ecoregion or across any larger domain for which the desired state
variables are available.

5 Quantifying Representativeness

While most in situ field measurements are made at relatively small, individual
geographic points, ecosystem processes operate at many scales. In order to utilize
limited point measurements at larger spatial and temporal scales for input to or
evaluation of process modeling or for estimating landscape-scale characteristics, the
representativeness of those measurements must be quantified in the context of a
heterogeneous and evolving landscape. A useful representativeness metric is one
that can inform the selection of sampling locations, up-scaling of point measure-
ments, down-scaling of remote sensing data, and extrapolation of measurements to
unsampled domains. The representativeness metric described by Hargrove et al. [45]
provides a unit-less, relative measure of the dissimilarity between the ecoregion of
interest, which may contain a sampling site, and any other ecoregion. It is calculated
as the Euclidean distance between two ecoregion centroids within the standardized
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n-dimensional state space. Ecoregions with similar combinations of environmental
conditions will have centroids located near to each other in state space. Therefore,
the Euclidean distance between those centroids will be small, representing a low
dissimilarity or high representativeness measure. Meanwhile, ecoregions with very
different combinations of environmental conditions will have centroids located far
from each other in state space, resulting in a large Euclidean distance between them.
Such ecoregions will have a high dissimilarity or low representativeness measure. To
best capture the natural heterogeneity at the scale of interest, this ecoregion-based
representativeness should be calculated using MSTC Ecoregions with a large number
of divisions (i.e, a large value of k).

While Hargrove et al. [45] calculated representativeness in the context of ecore-
gions, this same approach can be applied to every map cell projected individually
onto the n-dimensional state space used to perform the cluster analysis that pro-
duced MSTC Ecoregions. This point-based representativeness metric captures the
full range of heterogeneity in the combinations of environmental conditions, provid-
ing a continuously varying measure of dissimilarity for every map cell with respect
to a map cell of interest, which may contain a sampling location. When a single
ecoregion centroid or map cell of interest is considered, a map of site representative-
ness can be produced. However, multiple ecoregions or map cells of interest may
be considered simultaneously, for instance, to provide a quantitative measure of the
representativeness of an array or network of sampling sites. The result is a map of
network representativeness for which the dissimilarity measure for every ecoregion
centroid or map cell is the Euclidean distance between that point and the nearest
ecoregion centroid or map cell of interest (i.e., the minimum value from a stack of
site representativeness maps, one for each ecoregion centroid or map cell containing
a measurement site). This representativeness metric, whether ecoregion- or point-
based, can be calculated not only between different geographic points in space, but
also between different (or the same) geographic points through time. For example,
the Euclidean distance between the present combination of environmental conditions
and those of the future for any single map cell represents a measure of the magni-
tude of environmental change over time. Therefore, with this metric it is possible to
calculate not only the present-day representativeness of measurements from a site,
but also the future representativeness of those present-day measurements, based on
future projections of the state variables used in the analysis.

5.1 Site Representativeness

Due to significant logistical constraints when working in the Arctic, a set of eight
potential sites were identified as candidates for measurements, long term monitoring
and potential manipulative experiments for the U.S. Department of Energy’s Next
Generation Ecosystem Experiment (NGEE) Arctic project in the State of Alaska:
Barrow, Council, Atqasuk, Ivotuk, Kougarok, Prudhoe Bay, Toolik Lake, and Fair-
banks. Because of available support infrastructure, Barrow was selected as an initial
location for collecting field measurements. To adequately capture the heterogeneity
of environmental gradients, an ecoregion-based representativeness analysis employed
ecoregion maps at the k = 1000 level of division. Figure 7(a) shows the present-day
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representativeness of the monitoring site at Barrow for the present period. In this
map, white to light gray land areas are well-represented by the Barrow location,
while dark gray to black land areas are poorly represented by Barrow. The Arctic
Tundra of the North Slope is well represented by the Barrow site, but the represen-
tativeness drops rapidly at the Brooks Range, which experiences different climate
conditions driven by high topography. If a field researcher were attempting to select
one additional sampling location in order to provide optimal coverage of the environ-
ments within the state of Alaska, that next site should be chosen within the darkest
land areas shown in the map. Once a new candidate site has been selected, a new
map of representativeness can be generated with simultaneous consideration of both
sites. Using this relative representativeness metric, optimal sampling locations can
be chosen to maximize the coverage of environmental conditions for any domain at
any scale for which sufficient state variable data are available.

Since climate model projections for the future were included in the MSTC proce-
dure, the future representativeness of the present-day Barrow-containing ecoregion
can also be mapped (Figure 7(b)). Since the climate is projected to change sig-
nificantly, the future representativeness of the present-day ecoregion is relatively
lower, which is indicated by darker colors in Figure 7(b) as compared with Fig-
ure 7(a). Such changes in representativeness are especially large in the Northern
Arctic Coastal Plains since this Arctic Tundra is projected to warm significantly
and has been identified as a sensitive environment (§3). Similarly, Figures 8(a)
and 8(b) contain maps of the present and future representativeness of present-day
Barrow, respectively, calculated using the point-based representativeness method.
As expected, the large-scale pattern of maps in Figure 8 is the same as that of the
maps in Figure 7, but the maps in Figure 8 show more detail and are less gener-
alized than those in Figure 7. Point-based site representativeness maps for each of
the eight candidate sites for the present time period are shown in Figure 9.

Since the representativeness metric—or measure of dissimilarity—can be com-
puted between any two map locations, a table quantitatively characterizing dissim-
ilarity of the eight individual candidate sampling locations may be useful for site
selection purposes. Table 7 shows point-to-point dissimilarity values for the eight
candidate sampling locations for the present time period. Of those locations, Barrow
and Fairbanks are the most dissimilar, having a dissimilarity value of 12.16. Atqasuk
and Prudhoe Bay are the most similar of the sites. Both Atqasuk and Prudhoe Bay
are near-coastal sites at the northern extent of the North Slope; therefore, the envi-
ronmental conditions are expected to be similar. In addition, according to Table 7,
the Prudhoe Bay site is most similar to Barrow, while the Council site is the most
dissimilar to Barrow, ignoring Fairbanks. This example analysis suggests that if
Barrow were the first sampling site selected, Council may be a strong candidate for
a second site in the northern half of the State of Alaska because of its dissimilarity
to Barrow. Similarly, Table 8 shows point-to-point dissimilarity values for the eight
candidate sampling locations for the future time period. While the dissimilarity
values for the future are similar to those of the present, it is apparent that some
sites become more similar while others become less similar. For example, Barrow
and Council become less dissimilar in the future (i.e., their dissimilarity value of
9.13 in the present changes to 8.87 in the future), indicating that the environmental
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1000 km

(a) Barrow

1000 km

(b) Council

1000 km

(c) Fairbanks

1000 km

(d) Atqasuk

1000 km

(e) Ivotuk

1000 km

(f) Kougarok

1000 km

(g) Prudhoe Bay

1000 km

(h) Toolik Lake

Figure 9: Point-based representativeness for eight potential present-day NGEE
Arctic sites for the present time period. White to light gray land areas are well-
represented by the site, while dark gray to black land areas are poorly represented
by the site.
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Table 7: Site state space distances for the present (2000–2009) with DEM

Toolik Prudhoe
Sites Council Atqasuk Ivotuk Lake Kougarok Bay Fairbanks

Barrow 9.13 4.53 5.90 5.87 7.98 3.57 12.16
Council 8.69 6.37 7.00 2.28 8.15 5.05

Atqasuk 5.18 5.23 7.79 1.74 10.66
Ivotuk 1.81 5.83 4.48 7.90

Toolik Lake 6.47 4.65 8.70
Kougarok 7.25 5.57

Prudhoe Bay 10.38

Table 8: Site state space distances for the future (2090–2099) with DEM

Toolik Prudhoe
Sites Council Atqasuk Ivotuk Lake Kougarok Bay Fairbanks

Barrow 8.87 4.89 6.88 6.94 8.04 4.18 11.95
Council 8.82 6.93 7.74 2.43 8.24 5.66

Atqasuk 5.86 5.84 8.15 2.30 10.16
Ivotuk 2.01 7.27 4.75 7.51

Toolik Lake 7.81 5.00 8.33
Kougarok 7.89 6.42

Prudhoe Bay 9.81

conditions in Barrow and Council are more different in the present than they are
projected to be in the future.

Table 9 shows a full matrix of point-to-point dissimilarity values for the eight
candidate sites between the present and the future. This table quantifies the dissim-
ilarity of present-day sites to those same sites in the future. For this list of widely
dispersed locations, the environmental conditions for any single site in the present
will be most like the environmental conditions for that same site in the future.
Therefore, the smallest dissimilarity values are along the diagonal in Table 9. The
largest value on the diagonal is for the Barrow site, indicating that environmental
conditions at Barrow are projected to change more than at any other candidate site.
In addition, this table shows that environmental conditions at Barrow in the future
are more similar to those at Council in the present (8.38) than are the conditions
at Barrow in the present to Council in the future (9.67). This result is consistent
with the MSTC Ecoregion migration shown in Figure 6. This point-to-point analy-
sis through time is a novel method for quantifying relationships between sampling
locations and how those relationships evolve over time due to environmental change.

5.2 Network Representativeness

A monitoring network often consists of a geographically distributed constellation
of measurement sites or may be locations where samples are collected for further
analysis in the laboratory. Quantifying the representativeness of the network as a

21



Table 9: Site state space distances between the present (2000–2009) and the future
(2090–2099) with DEM

Future (2090–2099)
Toolik Prudhoe

Sites Barrow Council Atqasuk Ivotuk Lake Kougarok Bay Fairbanks

P
re

se
nt

(2
00

0–
20

09
) Barrow 3.31 9.67 4.63 6.05 5.75 9.02 3.69 11.67

Council 8.38 1.65 8.10 5.91 6.87 3.10 7.45 5.38
Atqasuk 6.01 9.33 2.42 5.46 5.26 8.97 2.63 10.13

Ivotuk 7.06 7.17 5.83 1.53 2.05 7.25 4.87 7.40
Toolik Lake 7.19 7.67 6.07 2.48 1.25 7.70 5.23 8.16

Kougarok 7.29 3.05 6.92 5.57 6.31 2.51 6.54 5.75
Prudhoe Bay 5.29 8.80 3.07 4.75 4.69 8.48 1.94 9.81

Fairbanks 12.02 5.49 10.36 7.83 8.74 6.24 10.10 1.96

whole is important for optimal network design to avoid unnecessary duplication and
to maximize the coverage of the monitoring network. By combining multiple maps
of site representativeness for every sampling location, and calculating the minimum
value for every map cell, maps of network representativeness are produced. Fig-
ures 10(a) and 10(b) contain maps of ecoregion-based network representativeness
for all eight candidate sampling sites for the present and future time periods, re-
spectively. Similarly, Figures 11(a) and 11(b) contain maps of point-based network
representativeness for the same eight candidate sampling sites for the present and
future time periods, respectively. White to light gray land areas are well-represented
by the network of sites, while dark gray to black land areas are poorly represented
by the network of sites. If the objective were to maximize the coverage of all envi-
ronments in the State of Alaska, the next sampling location should be chosen within
the darkest land areas shown in the map. Most of Alaska is well represented by this
network of eight sampling locations.

6 Conclusions

Systematic sampling strategies are essential for understanding ecosystem re-
sponses to climate change and informing model development. In the harsh Arctic
environment—where climate change appears to be most rapidly affecting sensitive
ecosystems and vulnerable, carbon-rich permafrost—filling critical gaps in observa-
tions is expensive and technically challenging. To fully explore the regional and
global implications of climate change in the Arctic, global Earth System Models
must capture the important processes and feedbacks. Such models must be de-
veloped based on a rich body of observational data as representative as possible
of multiple spatial and temporal scales. Meanwhile, finite resources and logisti-
cal constraints place restrictions on the number of sampling sites, spatial extent,
frequency, and types of measurements that can be collected. This study proposes
a quantitative, data-based methodology for stratifying sampling domains, inform-
ing site selection, and determining the representativeness of measurement sites and
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sampling networks.
Multivariate spatiotemporal clustering (MSTC), based on k-means cluster anal-

ysis, was applied to down-scaled general circulation model (GCM) results and obser-
vational data for the State of Alaska at a nominal resolution of 4 km2 to define a set
of ecoregions at multiple levels of division across two decadal time periods. Maps of
ecoregions for the present (2000–2009) and future (2090–2099) were produced, show-
ing how combinations of 37 environmental conditions are distributed across Alaska
and how these combinations shift as a result projected climate change in the 21st
century. Using this statistical approach, optimal sampling locations, called realized
centroids, were identified for each ecoregion at every level of division. In addition,
the resulting geographic shifts and changes in areal distribution of ecoregions sug-
gested that some environments may disappear, many will be redistributed, and new
ones will appear in the coming century. This analysis provides insights into the iden-
tification of the most sensitive and potentially vulnerable Arctic ecosystems. The
Euclidean distance within the 37-dimensional state space used for MSTC provides
a metric for representativeness. Gray-scale maps of representativeness, showing the
similarity of every map cell to a list of eight candidate samples locations near town
sites in Alaska, were produced for each site. Tables quantitatively characterizing the
similarity of candidate sampling locations to each other across space and through
time were generated. These tables are useful for understanding the strength of the
environmental gradients between sites and how those gradients may change based
on model projections of the future. Taken together, these analysis products provide
model-inspired insights into optimal sampling strategies across space and through
time, and these same techniques can be applied at different spatial and temporal
scales to meet the needs of individual measurement or monitoring campaigns.

The representativeness of a sampling network is best maximized before the net-
work is deployed. Even if additional “optimized” sites are added to an existing
network, it will require many more additions to approach the theoretical maximum
representativeness for a given number of initial sites. It is difficult, with only the
sequential addition of new optimized sites, to achieve the same representativeness
once some sampling sites have been established. Representativeness resulting from
such network “repairs” rarely ever equal the representativeness of a network initially
designed de novo with that same number of sampling sites. Even if the network is
to be constructed in stages, it is best to design site placement using the final, ulti-
mate complement of sites and to operate sub-optimally until the full network can
be completed. Otherwise, many more sites will have to be added to the existing
network in order to achieve the same representativeness than could otherwise have
been designed in initially.

Cluster analysis and n-dimensional data space regressions offer quantitative meth-
ods for up-scaling and extrapolating measurements to land areas within and beyond
the sampling domain and provide a down-scaling approach to the integration of
models, observations, and process studies. The accuracy of the up-scaled data will
be higher for areas represented well by the monitoring network and lower for ar-
eas that are poorly represented. At a large scale, these techniques are useful for
delineating distinct, broad regions and optimal measurement sites. However, this
methodology can also be applied at finer spatiotemporal scales, with inclusion of
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other geophysical characteristics and remote sensing data, to inform measurement
frequency and site selection within these broader ecoregions.
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