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1. Introduction 
Geographic Information Systems (GIS) provide an effective environment for integrated 
analysis using multiple spatial data.  In a GIS, overlay and visual exploration of relationships 
among two or more geographic features is the simplest spatial analyses.  However, taking 
advantage of the real power of a GIS, integrated analysis of using two or more data layers are 
more common where the topological relationships between the layers are exploited while 
modeling a spatial process.  Spatial processes are scale dependant and it is desirable that the 
level of analysis captures the maximum geographic variability (Tobler and Mollering 1972; 
Woodstock and Strahler 1987; Buttenfield and McMaster 1991) and best describe the process 
being modeled (Goodchild 2001).  Often geographic data are generated at different 
geographic scales (the ratio between the sizes of an object on a map and in reality), spatial 
resolutions (smallest object size that can be represented), and times.  Moreover, Geographic 
data production is subjected to variable spatial accuracy (relationship between a measurement 
and the reality it purports to represent) and precision (the degree of detail in the reporting of a 
measurement) (Goodchild, 1991).  This leads to the common phenomena of spatial and 
temporal misalignment of geographic data where topological relationships of two different 
geographic objects remain ambiguous.  In many situations, for the purpose of minimizing 
such ambiguity, it is ideal that the data used in the same analysis should represent the same 
geographic scale and resolution as well as temporal currency.  However, spatial analyses in 
the real world involve data generated by multiple agencies with disparate scale, accuracy, 
integrity, and update frequency.  It becomes necessary to develop analytical approaches that 
provide best possible way to clarify the topological ambiguity and rectify the spatial and 
temporal misalignment.  To illustrate such scenarios of spatial and temporal misalignment of 
data, here we describe two case studies: one on the delineation of contributing upstream 
watershed from drinking water intake locations and the second on spatial decomposition of 
Census data with a smart interpolation technique respectively.  It should be noted that these 
national databases used in these studies continue to evolve in their overall qualities.  Some of 
the data challenges encountered at the time of study have subsequently been addressed in the 
later years.  The objective is not to focus on the shortcomings of the databases, but to 
generalize the problems (and possible solutions) that continues to exist as geographic data of 
disparate lineage and hence consistency, integrity, and quality are integrated for analysis. 
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2. Spatial misalignment: The case of watershed delineation 

2.1 Background 

Vulnerability of surface water supplies to pesticide residues in raw water depends in part on 
pesticide usage in a watershed, which in turn depends in part upon land use/cover 
characteristics, such as percent cropped acreage.  To advance the national scale 
geographically-targeted monitoring and mitigation capabilities at a watershed level, a 
collaborative effort among the U.S. Environmental Protection Agency (EPA), the United 
States Geological Survey (USGS), and Oak Ridge National Laboratory (ORNL) was initiated 
in the year 2000.  The goal was to georeference all known community water supply (CWS) 
surface water intakes in the continental United States to the newly-available National 
Hydrography Dataset (NHD), and to delineate upstream contributory watersheds for each 
intake.  Using the delineated watersheds, land use/land cover statistics for each watershed 
were obtained from the National Land Cover Dataset (NLCD), and pesticide usage was 
estimated from other available data.  For the relevance of spatial misalignment, the following 
discussion focuses on the first task of georeferencing the intake locations to the hydrography 
network.  The characteristics of the two databases are highlighted in Table 1.   

Table 1.  Brief descriptions of the two data sets used in this analysis. 

 

Description Resolution Notes 

Drinking Water Intakes Database 

Public Supply Database (PSDB) 
created by USGS (Focazio et al 
2000) 

6945 point locations 

Unknown 
and variable 
resolution 
and quality 

Points 

A 2001 version originally extracted from 
USEPA’s Safe Drinking Water 
Information System (SDWIS) was used. 

6361 locations for the Contiguous U.S. 
were used in the analysis. 

Hydrography Database 

Medium resolution National 
Hydrography Database (NHD) 
(Simley and Carswell 2009) 

Approximately 3 million stream 
segments and water bodies  

 

1:100,000 

Lines and 
polygons 

 

A May 2001 version was primarily used.  
However, n earlier version from October 
1999 and a later version of NHD from 
June 2002 for solving individual 
analytical errors that resulted from 
identifiable anomalies in the May 2001 
version of the NHD data. 

 

Initial examination of the intakes locations revealed a spatial misalignment with the 
hydrography network.  Consequently, contributory upstream watershed delineation for 
drinking water intake locations required topologically associating the CWS intakes locations 
to the hydrography network, in particular the stream centerlines.  Given the variability in 
scale and resolution, and uncertainty in the positional accuracy of the intake locations, intakes 
were often close to two (or more) NHD reaches (Figure 1).  Moreover, some of the intakes 
were associated with hydrographic features that were not captured in the 1:100K scale NHD 
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data.   Thus associating them with the nearest stream reach using a simple GIS ‘snap’ 
function was not deemed to be the optimal method.  Instead, an approach through attribute 
matching, between the NHD and the intake database, was developed to increase the level of 
certainty in those associations.   

 

Figure 1. Example of georeferencing of a CWS intake location to the NHD. 

 

2.2 Technical Approach 

A vastly automated algorithm (based on attribute matching, feature characterization, and 
proximity analysis) that evaluates multiple spatial and non-spatial attributes from the CWS 
database and the NHD was developed that assigned each intake to the most appropriate 
stream/reservoir network in the NHD.   

For each CWS location, two nearest NHD reaches (linear and/or polygon) were selected.  
Both selected features were tested with the georeferencing algorithm.  The georeferencing 
model (algorithm) performed an extensive conditional test based on five primary parameters:  

1. Name of source for intakes (N), 

2. Name of river associated with intakes (A),  

3. Distance to Reach (D),  

4. Linear vs. Polygon Reach condition (P), and  

5. Ratio of the two Distances from the intake location to the two nearest reaches 
(R).   

Alphanumeric flag values were assigned for each of the five parameters in the form of [xN 
xA xD xP xR], where N, A, D, P, and R represents the five parameters respectively.  For both 
NHD reaches, the first four numeric values (x from the alphanumeric part) were added to 
produce final flag values (Flag 1 and 2 for the nearest and the second nearest reach 
respectively).  Initial testing of the algorithm indicated that inclusion of the fifth parameter 
(R) in determining the final flag value introduces undesired error in the results.  
Consequently, values for the fifth parameter (R) is determined and stored but not evaluated as 
part of the final flag value calculation.  It is only consulted in certain situations where 
anomalies were detected during the verification and validation process.  Because of the 
design (of the algorithm), lower flag value indicated a better match for any intake location 
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and the corresponding reach was selected as the best or most appropriate reach the intake 
should be georeferenced to.  The following section describes the conditional testing algorithm 
to determine the most logically appropriate reach to which an intake should be indexed. 

Parameter 1 and 2: Name of source (xN) and Name of associated river (xA) 

The CWS intake database had a source name for every intake location.  In addition there is an 
attribute field for the name of associated river for each intake.  Although the source name 
field was always (100%) populated, it was not true for the associated river name field (49% 
populated).  These two name fields were the only spatial link to the NHD, which had names 
for linear and polygon reaches.  The following procedure was generally applied when 
matching the "source name (Sourcename)" and the associated river name (Riverresla)” fields 
for each intake location to the two nearest NHD reach names. 

To facilitate the spatial association, names from these two fields were first standardized by 
expanding abbreviations (Table 2).   
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Table 2.  Standardized abbreviations for field names. 

 

Abbreviatio
n 

Standardized Abbreviatio
n 

Standardize
d 

Abbreviatio
n 

Standardize
d 

BK, BROK, 
BROO BROOK NW NORTHWES

T WBR WEST 
BRANCH 

BLCKWTR, 
BLKWTR 

BLACKWATE
R OFFST OFFSTREAM WF, WFK WEST FORK 

BLK BLACK QTR QUARTER WTRSHD WATERSHE
D 

BR, BRCH, 
BRA BRANCH 

R, RI, RV, 
RVR, RIV, 

RIVR, RIVE 
RIVER E EAST 

BYWY BYWAY RES, 
RESEVOIR RESERVOIR EFK EAST FORK 

CH, CHNL, 
CHAN CHANNEL RD ROAD IRR IRRIGATIO

N 

CNL, CAN, 
CANA CANAL RN RUN NE NORTHEAS

T 

CK, CR, 
CRK, CREE, 

CREK 
CREEK RT, RTE ROUTE U, UP UPPER 

CKS, CRKS CREEKS S, SO, SOU SOUTH OFFF OFF 

CNTR CENTER SBR SOUTH 
BRANCH 

OS, OFFSTR, 
OFFCHANNE

L 

OFFSTREA
M 

DTCH DITCH SFK SOUTH 
FORK DRW DRAW 

F, FK, FRK FORK SP, SPR SPRING GUL GULCH 

FR, FRM FROM SPRRNGS SPRINGS UN UNNAMED 

FK S, FKS FORKS STR, STRE, 
STRM STREAM UNT, UT UNNAMED 

TRIBUTARY 

LT, LTL, 
LTTL LITTLE SYS SYSTEM OFF STREAM OFFSTREA

M 

L, LR, LOW LOWER ST SAINT OFF 
CHANNEL 

OFFSTREA
M 

LK LAKE SW SOUTHWEST OFF OFFSTREA
M 

M, MID MIDDLE SUPP SUPPLY SOUTH SOUTHWES
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WEST T 

MN MAIN TR, TRB, 
TRI, TRIB TRIBUTARY SOUTH EAST SOUTHEAS

T 

MT MOUNT TRIBS, TRS TRIBUTARIE
S 

NORTH 
WEST 

NORTHWES
T 

MTN MOUNTAIN TWN TOWN NORTH 
EAST 

NORTHEAS
T 

N, N0RTH, 
NO NORTH V, VLY, VY VALLEY   

NF, NFK NORTH FORK W WEST   

 

Subsequently, the names were split into two components: 

1. Name Component (For example, Milton, Mississippi, Clinch, Colorado) 

2. Feature Component (For example, River, Stream, Creek, Reservoir, Fork) 

At this stage at least one or both components (Name and Feature) for the CWS source and 
NHD Reach would be present or absent.  That presented 21 different possibilities of matches 
or mismatches (Table 3).  The following rules were applied for matching: 

1. Name component matches were ranked higher than feature component matches. 

2. The "present-absent", "absent-present", and "absent-absent" combinations were never 
considered as matches. 

3. A "present-present" non-match was worse than a "present-absent" non-match, which was 
worse than an "absent-absent" non-match.  (Considering no information is better than the 
presence of wrong information) 

The 21 different combinations were further classified into 10 individual categories (Table 3).  
The first three categories were considered matches and the other seven categories were 
considered mismatches.  By design, the categories indicated an ascending order of mismatch 
i.e. the categories are scaled between category 1 (Flag 1) that represents a perfect match and 
category 10 (Flag 10) that represents a complete mismatch. 

Table 3.  The scenarios are arranged in a descending order of "goodness of match". 

 

PM: Present & Match PN: Present & No-match A: Absent (No-match) 

Case # 
CWS Source Name NHD Reach Name 

Flag 
Name Feature Name Feature 

1 PM PM PM PM 1 

      

2a PM PN PM PN  
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2b PM A PM PN 2 

 2c PM PN PM A 

2d PM A PM A 

      

3a PN PM PN PM 

3 
3b A PM PN PM 

3c PN PM A PM 

3d A PM A PM 

      

4 A A A A 4 

      

5a PN PN A A 
5 

5b A A PN PN 

      

6a A PN PN PN 
6 

6b PN PN A PN 

      

6c PN A A PN 
7 

6d A PN PN A 

      

6e PN A PN A 
8 

6f A PN A PN 

      

6g PN A PN PN 
9 

6h PN PN PN A 

      

6i PN PN PN PN 10 

 

Parameter 2: Distance (xD) 
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The intake locations were previously verified by USGS to an accuracy of 6 arc seconds with 
respect to the reference data.  Distance between an intake location and the two closest reaches 
were recorded and classified with the following flags: 

Distance between intake and NHD reach ≤ 6 arc seconds: Flag = 0 

Distance between intake and NHD reach > 6 arc seconds: Flag = 10 

Parameter 3: Linear vs. Polygon Reach (xP) 

Hydrologic features in the NHD are represented as linear (rivers, streams, canals etc.) and 
polygon (lakes, reservoirs, large rivers) reaches.  Initially available data indicated that 
significant numbers of the intake points were present close to a water body (polygon) reach 
that also had a centerline (linear) reach).  Because both the polygon and linear reaches may 
have the same name, it needed to be decided which reach the intake location should be 
referenced to.  Initial investigation showed that in these scenarios, intakes were usually 
associated with lakes, reservoirs, and wide-body rivers (polygons) rather than linear reaches.  
Accordingly a polygon reach was rated higher than a linear reach in the algorithm as follows: 

If selected reach is a polygon reach: Flag = 0 

If selected reach is a linear reach: Flag = 10 

Parameter 4: Relative Distance (xR) 

Often the two closest NHD reaches for an intake point had similar names (equivalent flag 
values) or a missing name for the first reach (resulting in a higher match with the second 
reach).  But visual investigations reveal that the distance between the intake point and the 
second reach is significantly greater than that between the intake and the first reach (Figure 
2).  For example, an intake location may be close to the "Clinch river", but the name field is 
empty for the NHD reach that represents the closest reach to that point.  The second closest 
reach may be a long distance away from the point, but if its name field had "Tributary to 
Clinch River", the algorithm would produce a better match with the second closest reach for 
that particular intake.  To logically identify and eliminate this problem, the algorithm 
produces a relative distance flag in the following way: 

Distance between intake location and the first closest reach = d1 

Distance between intake location and the second closest reach = d2 

If (d1/d2) ≤ 3: Flag = 0 

If (d1/d2) > 3: Flag = Value of (d1/d2) rounded to the closest integer. 
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Figure 2. Hypothetical example where the relative distance between two reaches can be used 
to refine georeferencing model output. 

Initial testing of the georeferencing algorithm and manual verification of the model results 
using 1775 intake locations indicated that the name matching part of the algorithm was the 
most critical control of the modeling process.  For all intakes that produced a perfect name 
match, further review of the flag values during the verification suggested that the other 
conditional tests do not add any further value for selecting the most appropriate reach.  Based 
on these observations, the flow of the georeferencing model was modified to streamline the 
algorithm (Figure 3). 

 

 

Figure 3.  Flowchart describing the general functionality of the georeferencing model. 
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General Process of Conditional Testing 

Compare CWS intake source name with the closest (NHD1) and the second closest (NHD2) 
NHD reach names and evaluate all flags (xN, xA, xD, xP, xR). 

1. If source name matches the closest and not the second closest NHD reach, select the 
closest as the most appropriate reach for indexing. 

2. If source name matches the second closest and not the closest NHD reach, select the 
second closest as the most appropriate reach for indexing. 

3. If source name matches both the closest and the second closest NHD reaches 

a.  Evaluate polygon (xP) and distance (xD) flags for both reaches.   

b. Add the numeric values to determine Flag1 and Flag2 and the reach associated 
with the lower flag value is selected as the most appropriate reach for indexing. 

4. If source name does not match neither the closest nor the second closest NHD reaches 

a. If the source name contains the words “lake”, “pond”, “reservoir” or 
“impoundment”, compare source name with associated river name 

i. If river name matches the closest and not the second closest NHD reach, 
select the closest as the most appropriate reach for indexing. 

ii. If river name matches the second closest and not the closest NHD reach, 
select the second closest as the most appropriate reach for indexing. 

b. If the source name does not contain the words “lake”, “pond”, “reservoir” or 
“impoundment”, compare source name with associated river name 

i. Evaluate name (xN), polygon (xP), and distance (xD) flags for both 
reaches. 

ii. Add the numeric values to determine Flag1 and Flag2 and the reach 
associated with the lower flag value is selected as the most appropriate 
reach for indexing. 

Once the logical association was established with a NHD reach with an intake using the 
general algorithm described above, the indexed intake location on the NHD is determined by: 

a. Determining the closest location on the network if the logical association is with a 
linear reach (river, stream) 

b. Determining the nearest location on the shore if the logical association is with a 
polygon reach (lakes, reservoirs) and then selecting the closest point on the 
drainage network (drains) inside the polygon reach. 

2.3 Results 

Out of the 6361 intake points georeferenced through the modeling process, 5084 (79.92%) 
were indexed to the closest NHD reach and 1277 (20.08%) were indexed to the second 
closest NHD reach.  A total of 4207 (66.14) intakes were indexed to a linear reach (river, 
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streams) while 2154 (33.86%) intakes were indexed to a polygon reach (lakes, reservoirs).  
Detailed statistics of the georeferenced intakes are given in Table 4. 

Table 4. Statistics of Georeferenced (6361) CWS Intake Locations 

 

Georeferenced to 
Linear Reach Polygon Reach Total 

With Name No Name With Name No Name 6361 

 

Nearest NHD reach 2461 
(48.41%) 

756 
(14.87%) 

1366 
(26.87%) 

501 (9.85%) 5084 
(100.00

%) 
3217 (63.28%) 1867 (36.72%) 

 

2nd nearest NHD reach 990 
(77.53%) 

0 

(0.00%) 

164 
(12.84%) 

123 

(9.63%) 

1277 
(100.00

%) 
990 (77.53%) 287 (22.47%) 

 

Analysis of the results from the name-matching algorithm indicated that 4496 (70.68%) 
intake locations had some level of match (name flags 1, 2, or 3) with the NHD reaches they 
were indexed to.  3244 (51%) intake locations showed a perfect name agreement between the 
CWS source name and indexed NHD reach name while another 729 (11.46%) locations 
showed a perfect name agreement between the CWS source name and the associated river 
name. Other details of the name-matching model are as provided in Table 5. 

Table 5. Relative distributions of the CWS intakes georeferenced to the closest and the 
second closest NHD reach. 

 

Name-match Score CWS Intake georeferenced to Total 

Nearest NHD reach 2nd nearest NHD reach 

1 2816 (55.39%) 428 (33.52%) 3244 (51.0%) 

1A 206 (4.05%) 523 (40.96%) 729 (11.46%) 

2 128 (2.52%) 13 (1.02%) 141 (2.22%) 

3 329 (6.47%) 53 (4.15%) 382 (6.01%) 

4 0 (0.00%) 0 (0.00%) 0 (0.00%) 

5 1257 (24.72%) 232 (18.17%) 1489 (23.41%) 

6 29 (0.57%) 3 (0.23%) 32 (0.50%) 
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7 1 (0.02%) 1 (0.08%) 2 (0.03%) 

8 2 (0.04%) 0 (0.00%) 2 (0.03%) 

9 57 (1.12%) 3 (0.23%) 60 (0.94%) 

10 259 (5.09%) 21 (1.64%) 280 (4.40%) 

Total 5084 (100.00%) 1277 (100.00%) 6361 (100.00%) 

 [Note: The name-match score is the numeric value (x) of the name flag (xN) described in the 
algorithm.  The scores 1 and 1A represent the name-match flags for the CWS intake source 
name and associated river name respectively.  The absence of any score (4N) is conspicuous 
and can be explained by the presence of a CWS source name for all intakes (thus the 
condition to satisfy a 4N flag never occurs).] 

The results of the distance analysis part of the algorithm indicate that 5166 (81.21%) of the 
CWS intake locations were within the distance of 6 arc seconds of the NHD reach they were 
indexed to.  The rest of the intakes (1195 or 18.79%) were farther than 6 arc seconds from the 
NHD reach they were indexed to.   

2.4 Verification and Validation 

The verification of algorithm output is an important step in the design of geographic 
applications in order to preserve the quality of stored data.  Enforcing the attribute accuracy 
of geographic information systems should be a primary goal.  However, statistically 
significant analysis of error often can only be achieved through manual cross-validation of 
data points.   

To facilitate the manual verification and validation process, which is time consuming and 
laborious, GIS-based tool was developed.  The tool allowed the user to sequentially run 
through a list of selected intake locations.  For each intake under consideration, associated 
NHD data, GNIS (Geographic Name Information System) data layers, United States 
Geological Survey (USGS) digital topographical maps (1:24K DRG), and the attribute data 
for the intake were automatically overlaid for visual inspection.  The following scheme was 
designed to record the results of the verification and validation of each point: 

1. Keep Best: Keep the model predicted reach as the most logical reach for 
georeferencing the intake to. 

2. Use Alternate: Select the alternate reach (second best prediction by the model) as the 
most logical reach for georeferencing the intake to. 

3. Pick New Line: Select an entirely different linear reach as the most logical reach for 
georeferencing the intake to. 

4. Pick New Polygon: Select an entirely different polygon reach as the most logical 
reach for georeferencing the intake to.  

5. Bad CWS Point: Mark the intake as a problem point because of unacceptable quality 
of NHD and/or intake location data (as indicated with reference to the DLG). 



13 

 

Numbers (in parenthesis) associated with each item indicate the numeric QA/QC flag 
assigned to the point indicating the verification result.  For all of the above choices, the user 
has the ability to record a comment that is linked to the intake point in the attribute table.  

To develop a representative sample of all CWS points (N= 6361) by choosing a desired 
confidence level and a desired confidence interval for the total number of CWS points, the 
optimal number of points needed to be verified was determined by the following relationship 
(Equation 1): 

2

2 )1(**
c

ppZSampleSize −
=

   (Equation 1) 

Where: 

Z = the value corresponding to the desired confidence level (1.96 for 95% confidence) 

p = number of total points, and 

c = confidence interval (expressed as a decimal; 0.02=±2%). 

 Using this relationship, it was determined that at a 95±2% confidence, for the total number 
of CWS points, a representative sample would include at least 1743 points.  Thus by 
verifying 1933 out of 6361 points (30.40%), the confidence was slightly higher than 95±2%. 
Confidence intervals for each flag category were determined individually (all are at a 95% 
confidence level) (Table 6). 

Table 6. General statistics of the QA/QC analysis of the CWS intake locations. 

 

General statistics of the QA/QC analysis of the CWS intake locations 

Flag QA'd Total Points Percentage Confidence 

10N 280 280 100.00% 100% 

9N 60 60 100.00% 100% 

8N 2 2 100.00% 100% 

7N 2 2 100.00% 100% 

6N 32 32 100.00% 100% 

5N 929 1489 62.39% 95± 2.0% 

4N 0 0 N/A N/A 

3N 302 382 79.06% 95± 2.6% 

2N 112 141 79.43% 95± 4.3% 

1A 120 729 16.46% 95± 8.2% 

1N 95 3244 2.93% 95± 9.9% 
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Total 1933 6361 30.40% 95±2.0% 

Overall Confidence Level 95% and Confidence Interval ± 2% for all intake locations verified 
(N =6361; n =1933). 

All points flagged “6N” or greater were examined (376).  To obtain an equal confidence level 
for 5N points (N=1489), 919 points were reviewed.  Approximately one percent of 1N and 
1A flags were checked (26 of 3244 and 4 of 729 respectively). Approximately eighty percent 
of the total 2N and 3N points were examined (414 of 523) and approximately 70% of those 
points were flagged 3N (302) and approximately 30% were flagged 2N (112).  The number of 
3N points to check was calculated first (60% of total) and rounded to the nearest integer, and 
then the number of 2N points was determined by subtracting the 3N value from the total 
number of 2N and 3N points desired. 

Analysis of the verification and validation results (Table 7) show that majority (71.4%) of the 
model predicted georeferencing was correct (as indicated by QA flag 1 where the best flag 
assignment was considered correct).  Only 17.5% of the verified intake locations were found 
to be problematic because of unacceptable quality of NHD and/or intake location data (as 
indicated with reference to the DLG).  In 6.8% cases, the alternate reach (second best 
prediction by the model) was found to be the most logical reach for georeferencing the intake 
to.  About 1% of the verified intake locations were manually indexed to a new NHD linear 
reach and about 3.3% of the verified intake locations were manually indexed to a new NHD 
polygon reach. 

Table 7. Verification and validation results of the analysis for the intake locations. 

 

Flag Keep Best (1) Use 
Alternate (2) 

Pick New 
Line (3) 

Pick New 
Polygon (4) 

Bad CWS 
Point (5) 

Total 
QA'd 

10N 135 48.21% 15 5.36% 5 1.79% 18 6.43% 107 38.21% 280 

9N 50 83.33% 2 3.33% 2 3.33% 1 1.67% 5 8.33% 60 

8N 2 100.00% 0 0.00% 0 0.00% 0 0.00% 0 0.00% 2 

7N 1 50.00% 0 0.00% 0 0.00% 1 50.00% 0 0.00% 2 

6N 23 71.88% 1 3.13% 1 3.13% 0 0.00% 7 21.88% 32 

5N 674 72.55% 57 6.14% 8 0.86% 30 3.23% 160 17.22% 929 

4N 0 0.00% 0 0.00% 0 0.00% 0 0.00% 0 0.00% 0 

3N 248 82.12% 9 2.98% 3 0.99% 7 2.32% 35 11.59% 302 

2N 95 85.59% 1 0.90% 1 0.90% 4 3.60% 10 9.01% 111 

1A 95 79.17% 10 8.33% 1 0.83% 2 1.67% 12 10.00% 120 

1N 57 60.00% 36 37.89% 0 0.00% 0 0.00% 2 2.11% 95 

Total 1380 71.39% 131 6.78% 21 1.09% 63 3.26% 338 17.49% 1933 
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3. Temporal misalignment: The case of population distribution 

3.1 Background 

High resolution population distribution data are essential for successfully addressing critical 
issues ranging from socio-environmental research to public health to homeland security 
(Dobson et al. 2000; Bhaduri et al. 2002, 2005, 2007; Chen 2002; Hay et al. 2005; Sutton et 
al. 2001).  Commonly available population data from Census is constrained both in space and 
time.  From a spatial perspective, Census data is limited by Census accounting units, such as 
blocks, and there is often great uncertainty about the spatial distribution of residents within 
those accounting units.  From a temporal perspective, detailed Census information is only 
available on a decadal scale since the census was originally designed for medium to long-
term solutions for social and economic planning activities over a number of years (U.S. 
Census Bureau, 2000).  However, the pressing need for finer temporal resolution population 
distribution data for risk and consequence assessment of disasters, prompted the development 
of population distribution data at temporal scales of nighttime and daytime (Bhaduri et al. 
2006, McPherson and Brown 2004, McPherson et al. 2006).   

Dasymetric modeling is one of the most well recognized and popular spatial modeling 
methods for disaggregating Census data.  In dasymetric mapping, ancillary spatial data at a 
finer spatial resolution is utilized to augment the spatial interpolation process, and the 
variability and spatial discontinuity in their values enable an asymmetric and discontinuous 
allocation of population (Wright 1936; Langford and Unwin, 1994; Eicher and Brewer, 2001; 
Mennis 2003).  Land cover/land use is the best example in this respect (Monmonier and 
Schnell, 1984; Reibel and Agrawal, 2006) where different land cover or land use categories 
for each cell can be used as a weighting function for population distribution such as urban 
areas which will have a higher weight than forested areas.  LandScan USA is a high 
resolution (3 arc seconds or approximately 90m cells) population distribution model for the 
50 U.S. states developed at Oak Ridge National Laboratory (Bhaduri et al. 2007).  This 
model employs the principles of dasymetric mapping specifically with the National Land 
Cover Database (NLCD) as one of the key ancillary spatial data.  For NLCD 1992 and NLCD 
2001, the years denote the year of the satellite imagery used to derive the databases and not 
the data distribution date which was several years later.  Given the assumed relationship 
between land cover data and population, ideally both databases need to be from the same time 
for the distribution model to produce optimal results.  However, the process of revising 
LandScan USA database with yearly updates from Census and older (and static) land cover 
data accentuates the challenge of temporal misalignment.  It is critical that the land cover data 
is updated and synchronized with the Census data year; otherwise the algorithm constraints 
will dictate that the increased population be accommodated by the existing populated cells.  
The following section describes how secondary databases are used to update the land cover 
information in an attempt to temporally align it with the population data. 

3.2 Technical Approach 

Census population data serve as the foundation for the LandScan USA model.  The model is 
resolved to each census block, with the goal being to maintain the integrity of the Census 
Bureau data at the block level for actual Census years.  An iterative methodology is used to 
characterize each census block using the NLCD 2001 to estimate the ratio between developed 
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pixels and population counts.  For each census block, a histogram of land cover types is built 
using the corresponding NLCD extent.  Using this information, each census block is assigned 
a model type that informs the algorithm how population should be allocated within that 
block.  

The easily observable links to anthropogenic activity makes land cover a crucial data layer 
for modeling population distribution.  However, using NLCD 2001 as a baseline input into 
the LandScan population distribution model presents immediate temporal issues: 

1. NLCD 2001 represents land cover derived from satellite imagery taken in 2001 but was 
not processed and released by USGS until early 2007. 

2. Annual county level Census estimates after 2001 were no longer temporally consistent 
with the land cover layer. 

3. The NLCD cannot be utilized for characterization of growth areas over time. 

In subsequent out-years from the 2000 U.S. Census, population estimates reported at the 
County level are decomposed to the spatial resolution required for LandScan USA.  The U.S. 
Bureau of Census releases annual intercensal population estimates for the nation, states, 
counties, incorporated places, and minor civil divisions, but does not report disparate growth 
patterns at the local or census block level.  In the absence of a comprehensive national census 
performed more frequently than on a decennial basis, other methods must be used to answer 
important questions.  Where is the growth taking place geographically?  What is the 
magnitude of growth in a particular place?  When is the growth occurring?   

Ideally, land cover change analysis would provide a better indicator of growth magnitude as 
well as improved spatial precision of growth areas.  However, the lag time of national land 
cover datasets, as well as the different classification schemes used for successive products, 
makes a comparative analysis of land cover unreliable for determining where population 
should be distributed.  

In the absence of current land cover data, other methods to allocate intercensal population 
estimates and improve the overall precision of all population distributions must be used.  
While simply prorating population growth across a county may be expedient, easy to 
calculate, and impervious to spatial data anomalies, this method also has the distinct 
disadvantage of discounting non-uniform growth patterns over time.  Spatial data change 
analysis through historical census analysis or identification of road network changes provides 
a consistent and scalable method that avoids uniform distribution of growth, but these 
methods also have drawbacks.  For example, while new roads are a good indicator of 
development, these roads may be built long before homes, businesses or other structures for 
human occupancy are built. 

Secondary Data for Improving Population Distribution 

Parcel Data 

Acquiring parcel address data from commercial providers affords frequent (quarterly) updates 
and is therefore an excellent candidate for replacing outdated land cover in some areas.  In 
the initial implementation of this method, over 49 million parcel address points were acquired 
for 536 counties.  This accounted for only 17% of the total U.S. counties, yet represented 
63% of the total U.S. population.   
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The parcel address points in a census block are compared to the number of housing units 
reported in the 2000 census as well as the number of workers assigned to the block based on 
the daytime population distribution algorithms.  The comparison resulted in a delineation of 
residential census blocks indicative of “new development”.  Taking this forward to the 
residential population distribution model, these blocks receive intercensal population 
determined by the number of address points and the average population per household for 
that county.  The remaining intercensal population growth is distributed to existing residential 
blocks.  This methodology produced markedly improved spatial precision of the population 
distribution especially in new suburban developments and rural census blocks.  For example, 
land cover may indicate undeveloped areas such as forest or agriculture, but correctly 
georeferenced parcel address point data refines the population distribution within a block.   

LiDAR and Derived Products 

The more recent availability of Light Detection and Ranging (LiDAR) data provided another 
opportunity to refine and update land cover to capture not only residential growth areas 
(Figure 4) but also temporal occupancy variations.  The original LiDAR dataset used for this 
purpose provided partial coverage at 1 meter resolution for 229 counties including many 
major metropolitan areas.  Since then additional areal coverage has been available as new 
data is captured or existing data is updated.  Included with the reflective surface, last return, 
bare earth, and intensity data, very detailed building extraction features were available that 
included attributes of area, height, roof pitch.  Using these physical building characteristics, 
each building feature is assigned a general land use type within the LandScan USA model.  
Census block type characterization is accomplished by comparing the building footprints 
within each census block to the number of housing units reported in the 2000 census as well 
as analyzing building types and the number of workers assigned to the block based on the 
daytime population distribution algorithms.  Residential buildings indicating “new 
development” receive intercensal population determined by the number of buildings and the 
average population per household for that county. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.  Building footprints highlight temporal misalignment of NLCD 2001 and 
population. 
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3.3 Validation and Verification 

The addition of each of the aforementioned secondary data sources to the LandScan USA 
model has resulted in a significant step forward in adjusting for temporal misalignment 
between the Census annual population estimates and NLCD 2001 data.  However, the 
introduction of this spatial data into the model can also introduce new concerns.  For 
example, Figure 5 shows an instance of a census block where population estimates developed 
using parcel address data and estimates developed using LiDAR data both indicate new 
growth.  However, the estimates are inconsistent and further validation must be done using 
high resolution imagery. 

Secondary data is used in the LandScan USA model to improve the precision of all 
population distributions, not only to identify intercensal growth.  The target Census date used 
in the LandScan USA model is known to be misaligned with the NLCD data, but there are 
also instances where it is unknown whether discrepancies between the land cover type and 
the census information is due to a temporal issue, inaccurate land cover data, scale factors, or 
all of the above.  These disparities must be accounted for in the model by including 
adjustments for known error parameters in the database.  

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Population from Census 2000, and estimates using parcel address points from 2007 
and LiDAR from 2007 are validated against high resolution imagery.   

Census (2000) :   

Population = 78 

Housing Units = 25 

 

Parcel Addresses (2007): 

Population Estimate = 486 

Address Points = 205 

 

LiDAR (2007):   

Population Estimate = 215 

Residential Units  = 64 
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