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Abstract Changes in climate as projected by state-of-the-art climate models are
likely to result in novel combinations of climate and topo-edaphic factors that will
have substantial impacts on the distribution and persistence of natural vegetation
and animal species. We have used multivariate techniques to quantify some of these
changes; the method employed was the Multivariate Spatio-Temporal Clustering
(MSTC) algorithm. We used the MSTC to quantitatively define ecoregions for
the People’s Republic of China for historical and projected future climates. Using
the Köppen–Trewartha classification system we were able to quantify some of the
temperature and precipitation relationships of the ecoregions. We then tested the
hypothesis that impacts to environments will be lower for ecoregions that retain
their approximate geographic locations. Our results showed that climate in 2050, as
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projected from anthropogenic forcings using the Hadley Centre HadCM3 general
circulation model, were sufficient to create novel environmental conditions even
where ecoregions remained spatially stable; cluster number was found to be of
paramount importance in detecting novelty. Continental-scale analyses are generally
able to locate potentially static ecoregions but they may be insufficient to define the
position of those reserves at a grid cell-by-grid cell basis.

1 Introduction

In the last two decades of the 20th century the rate of warming (0.3◦C/10 years)
over China has been considerably greater than the global value of 0.19◦C/10 years
(Wang and Gong 2000). Current fully-coupled general circulation models project
that this trend will continue into the future with mean annual temperatures increasing
1.8–3.5◦C by 2050 and 2–7◦C by 2100 (Cubash et al. 2001). Changes such as these
will likely result in novel combinations of climate and topo-edaphic factors that will
have substantial impacts on the distribution and persistence of natural vegetation and
animal species (Hobbs et al. 2006; Ohlemüller et al. 2006; Ricciardi 2007; Williams
and Jackson 2007; Williams et al. 2007).

Recently multivariate statistical techniques have been utilized to quantify these
changes (Coulston and Riitters 2005; Hargrove and Hoffman 1999; Metzger et al.
2005; Wang and Price 2007; Williams et al. 2007). One such method, the Mul-
tivariate Spatio-Temporal Clustering (MSTC) algorithm, developed by Hargrove
and Hoffman (2004), was used to demonstrate how abiotic environmental domains
in the continental United States, Alaska and portions of western Canada move
through space and time under various climate scenarios (Hargrove and Hoffman
2004; Hoffman et al. 2005; Saxon et al. 2005). These abiotic domains have similar
characteristics with respect to bioclimatic, edaphic, and topographic properties and
have been referred to as “climate-dynamic domains” (Saxon et al. 2005) or quantita-
tively defined ecoregions (sensu Hargrove and Hoffman 2004). We will refer to these
domains as ecoregions throughout the rest of this paper.

Once calculated, the ecoregions are mapped back into geographic space to demon-
strate shifts in their spatial locations. Additionally a single metric, the Euclidean
distance between ecoregion centroids, has been used to demonstrate the magnitude
of change between any two ecoregions (Saxon et al. 2005). Although this metric is
one of the few that can be used as a quantitative index of environmental change, it
lacks the ability to communicate the nature of the change without additional detailed
analyses.

Climate classification schemes provide an efficient method for capturing climatic
variables and seasonality into a single metric. One such accepted method, the
Köppen–Geiger classification system (Köppen 1931, 1936), has been widely used to
describe the potential distribution of natural vegetation based on climatic thresholds
thought to drive critical physiological processes (Bailey 1996; Kottek et al. 2006).
One of the main advantages of this type of classification scheme is that it is easy to
use with a variety of data sets and model outputs. The classification has been used
to detect recent changes in global and regional climate regimes (Diaz and Eischeid
2007; Fraedrich et al. 2001; Wang and Overland 2005) and to categorize simulation
results from general circulation models for paleo (Guetter and Kutzbach 1990) and
future climates (Gnanadesikan and Stouffer 2006; Kalvová et al. 2003).
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This paper builds on previous work to develop methods that enable conservation
practitioners to anticipate climatic change (Saxon et al. 2005). For this study we used
a modified Köppen classification (Trewartha and Horn 1980) method for quantifying
the climatic portion of the ecoregions and to test the assumption made by Saxon et al.
(2005) that impacts will be lower from climatic change for ecoregions, which retain
their locations and will provide refugia for species.

2 Methods

2.1 Multivariate spatio-temporal clustering

We used the MSTC technique (Hargrove and Hoffman 2004), which is based on a
k-means clustering algorithm (Hartigan 1975), to quantitatively define ecoregions for
the People’s Republic of China under historical climatic conditions and eight future
predicted climate scenarios. In general, the algorithm starts with k, 500 for this study,
randomly selected unique map cells (pixels) used as initial “seed” centroids. An
iterative process tests the Euclidean distance from each map cell to every centroid,
classifying it to the closest existing centroid. After all the map cells are classified,
a new centroid position is calculated as the mean of all coordinates of each map
cell classified to that centroid. Thus, the centroids move through the data space
while the map cells remain fixed. The classification converges and the iterations stop
when fewer than a fixed number of map cells change their ecoregion assignment
from the last iteration (we used <0.05%). Map cells are then re-united with their
geographic coordinates and assembled back into the map along with their final
ecoregion classification assignments.

We included 17 environmental variables (Table 1) from three distinct abiotic
categories (edaphic, topographic, and bioclimatic) that exert a strong influence on
the geographic distribution of flora and fauna and net primary production (Box 1981;
Lugo et al. 1999; Neilson 1995; Prentice et al. 1992; Prentice 1990; Woodward 1987).
All data sets used in this analysis were spatially distributed on a 4 km2 (1.25 arcmin)
data grid.

Map-based gridded climatic data used to calculate the bioclimatic variables
consisted of monthly time-series for maximum and minimum monthly temperature
(MMxT and MMnT) and precipitation (PPT). These geographic layers were devel-
oped from weather station data (∼2,500 stations) which were interpolated to a 4 km2

grid using the PRISM model (Daly et al. 2002, 1994) and a subset of the Tyndall
Centre TYN SC 2.0 climatic data set (Mitchell et al. 2004), which were consistent
with the data sets used by Saxon et al. (2005).

The TYN SC 2.0 data included monthly output (MMxT, MMnT, and PPT)
for the period 2001–2100. These data were generated by two general circulation
models (GCMs) from the Intergovernmental Panel on Climate Change Third Assess-
ment Report (Cubash et al. 2001)—the Hadley Centre’s general circulation model
HadCM3 (Gordon et al. 2000; Pope et al. 2000) and the Parallel Climate Model
(PCM) developed by the National Center for Atmospheric Research (Washington
et al. 2000). Both models were run into the future using two different forcing
scenarios, A1FI and B1, from the IPCC Special Report on Emissions Scenarios
(Nakićenović and Swart 2000).
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Table 1 Results from the principal component analysis and factor loadings after the varimax rotation
of the standardized input variables for all 500 ecoregion centroid values

Factor 1 Factor 2 Factor 3

Eigenvalue 6.43 3.51 2.78
Cumulative percent 37.8 58.5 74.8
Rotated factor pattern
Edaphic variables

Available water capacity 0.164 −0.137 0.803
Bulk density (g/cm3) 0.303 −0.158 0.760
Total carbon (g/m2) −0.171 0.086 0.844
Total nitrogen (g/m2) −0.169 0.092 0.844

Topographic variables
Elevation (m) −0.890 −0.058 −0.159
Compound topographic index 0.485 0.501 0.017
Annual potential solar insolation (kW/m2) 0.210 0.190 0.083

Bioclimatic variables
Annual maximum temperature (◦C) 0.962 0.044 0.032
Annual minimum temperature (◦C) 0.616 −0.641 −0.173
Annual precipitation (mm) 0.185 −0.939 0.066
Potential evapotranspiration (mm) 0.891 −0.303 −0.071
Precipitation of coldest quarter (mm) 0.194 −0.704 −0.014
Precipitation/potential evapotranspiration −0.241 −0.896 0.118
Precipitation of warmest quarter (mm) 0.085 −0.844 0.109
Temperature of coldest quarter (◦C) 0.639 −0.624 −0.175
Temperature of warmest quarter (◦C) 0.968 0.019 0.025
Kira’s warmth index 0.901 −0.399 −0.056

Signs and magnitude of the loadings indicate warming on factor 1, drying on factor 2, and edaphic
parameters load on factor 3 as soil fertility

Over the course of the next 100 years, the A1FI and B1 SRES scenarios corre-
spond with higher and lower emissions, respectively. The A1FI represents a world
with fossil fuel-intensive economic growth such that atmospheric concentrations of
carbon dioxide (CO2) should rise from 380 ppm to 580 ppm in 2050 and 940 ppm in
2100. The B1 scenario represents higher economic growth based on a shift away from
fossil fuels such that atmospheric CO2 should reach 482 ppm by 2050 and 550 ppm
by 2100.

We used the 30-year (1961–1990) monthly climatology for MMxT, MMnT, and
PPT from the PRISM dataset to represent historical climate. For the future climate,
we calculated monthly averages for MMxT, MMnT, and PPT over the 30-year period
1961–1990 for each of the four coarse-scale GCM scenarios at each grid cell over
the entire spatial domain. We calculated anomalies (differences for the temperature
variables and as ratios for precipitation) between the 30-year average and the
corresponding month for each of the four future GCM time-series. The anomaly for
each variable interpolated to the high-resolution grid using a bilinear interpolation
procedure. The interpolated anomalies were applied back to the observed PRISM
climatology (1961–1990 monthly averages) to create a high-resolution future monthly
time-series (2001–2100). We calculated monthly averages for two future time periods
2050 (representing the 30-year average for 2041–2070) and 2080 (representing the
30-year average for 2071–2100) for each of the four downscaled scenarios, thus giving
us eight future scenarios.
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The non-climate variables were derived from the 1:1,000,000 Chinese gridded
(4 km2) soil database (Shi et al. 2004) and the GTOPO30 digital elevation model
(U. S. Geological Survey 1996), which we resampled to a 4 km2 resolution grid.
For this study we assumed the spatial distribution of the edaphic and topographic
variables will be identical to historical conditions under all future scenarios. Clearly,
changes in climate and atmospheric concentrations of CO2 have direct and indirect
effects on soil nutrients and influence ecosystem dynamics at various temporal and
spatial scales (Morgan et al. 2007; Shaver et al. 2000; Weltzin et al. 2003). Saxon
et al. (2005), however, maintained that soil carbon and nitrogen were slowly changing
variables; therefore, it was necessary that we make the same assumption in order to
test whether areas with lower magnitude of change would provide refugia.

We standardized the values for all seventeen variables (Table 1) across the
nine climate scenarios such that each variable had a mean of zero and a standard
deviation of one. We conducted a principal components analysis (PCA) to remove
the effects of cross-correlations. We performed the MSTC on the resulting data to
simultaneously divide the ∼4.25 × 108 data points into 500 ecoregions. We chose this
level of cluster division, since it was able to resolve several large-scale regions such as
the Taklamakan Desert and Chengdu Basin while retaining the spatial detail of Tian
Shan and Himalayan mountain ranges. We mapped the data back to their original
geographic locations and each ecoregion was assigned a unique color.

We calculated the distance in environmental space between historical and future
ecoregions by first performing a principal components analysis (PCA) with a varimax
rotation on the centroid values for each of the ecoregions (Table 1). We then calcu-
lated the Euclidean distance in three-dimensional environmental space (weighted
sum of the first three PCA rotated factors) between the centroids to create the
“magnitude of change” from historical conditions for each of the future scenarios
(Saxon et al. 2005). The greater the value for this metric, the larger the multivariate
changes in the complex topographic, edaphic, and bioclimatic space.

2.2 Köppen–Trewartha

We used a modified Köppen–Trewartha climate classification (Trewartha and Horn
1980) to determine the distribution of climatic types and to describe the average
climate of each ecoregion and to evaluate the magnitude of change between historical
and future ecoregions. This modified classification identifies six main climate groups
(Table 2), five of which are based on the great thermic zones (A, C, D, E, and F) and
a dry group (B) that cuts across the first four thermic zones. The A-, C-, and D-zones
are further subdivided based on the seasonality of temperature and precipitation.

The Köppen–Trewartha climatic types were obtained by applying the classifica-
tion rules to each grid cell of the 30-year PRISM climatology as well as to all future
scenarios. For example, a grid cell where the average monthly temperature for 4
to 7 months is greater than 10◦C, the average temperature of the coldest month is
<0◦C, precipitation in the wettest summer month is higher than ten times that of
the driest winter month, and the warmest month is <22◦C would be classified as
a temperate, continental, cool, dry winter climatic type (DCwa). For the clustered
data, we calculated the climatic types by applying the Köppen–Trewartha classi-
fication rules to the mean monthly temperature and precipitation values for each
ecoregion.
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Table 2 Classification rules and descriptions of the Köppen climatic types as modified by Trewartha

Class Type Subtype Description Rules

A Tropical Coolest month >18◦C
Ar Rainy (tropical broadleaf evergreen 10 to 12 months wet

rain forest)
Am Tropical monsoonal forest 6 > Pmin > (250 - Pyear) / 25
Aw Tropical deciduous forests/woodland Winter dry > 2 dry months

B Dry climates Evaporation > precipitation
BS Semi-arid Annual rainfall < twice desert

limit of precipitation
BSh Tropical-subtropical shrubland 8 or more months >10◦C
BSk Temperate-boreal steppe Fewer than 8 months >10◦C

BW Arid or desert Annual rainfall < desert limit
of precipitation

BWh Tropical-subtropical desert 8 or more months >10◦C
BWk Temperate-cold desert Fewer than 8 months >10◦C

C Subtropical climates 8 to 12 months >10◦C
Cw Subtropical winter dry season Winter dry season

Cwa Mixed broadleaf deciduous and Warmest month >22◦C
needleleaf forest

Cwb Needleleaf evergreen and broadleaf Warmest month <22◦C
evergreen forests

Cf Subtropical humid Driest month >30 mm
Cfa Long and short needleleaf evergreen Warmest month >22◦C;

and broadleaf deciduous forests no distinct dry season
and evergreen broadleaf shrub
understory

Cfb Needleleaf evergreen and deciduous Warmest month <22◦C;
forest no distinct dry season

D Temperate climates 4 to 7 months >10◦C
DC Temperate continental climate Coldest month <0◦C
DCs Summer dry season Summer dry season

DCsa Mixed evergreen and deciduous Warmest month >22◦C
forests

DCsb Mixed evergreen and deciduous Warmest month <22◦C
forests

DCw Winter dry season Winter dry season
DCwa Mixed deciduous and needleleaf Warmest month >22◦C

evergreen forests
DCwb Needleleaf evergreen forests Warmest month <22◦C

DCf Humid continental Driest month >30 mm
DCfa Mid-latitude grassland, broadleaf Warmest month >22◦C;

deciduous forests and woodlands, no distinct dry season
mixed evergreen and broadleaf
forests

DCfb Needleleaf evergreen and mixed Warmest month <22◦C;
needleleaf-deciduous forest no distinct dry season

E Needleleaf deciduous forest and 1 to 3 months >10◦C
tundra woodland

F Polar
Ft Tundra, high altitude steppe 0◦C ≤ warmest month < 10◦C
Fi Perpetual frost All months <0◦C
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3 Results

Results from the MSTC yielded 500 unique clusters or quantitatively defined
ecoregions. Because the MSTC analyzed all nine scenarios simultaneously it was
theoretically possible for one or more of the nine scenarios to contain all 500
ecoregions. However, none of the nine scenarios individually contained more than
496 ecoregions. For purposes of brevity and ease of discussion we present results
from two of the nine possible climate scenarios. The historical scenario is represented

120º0'0"E110º0'0"E100º0'0"E90º0'0"E 120º0'0"E110º0'0"E100º0'0"E90º0'0"E

120º0'0"E110º0'0"E100º0'0"E90º0'0"E 120º0'0"E110º0'0"E100º0'0"E90º0'0"E

50º0'0"N

45º0'0"N

40º0'0"N

35º0'0"N

30º0'0"N

25º0'0"N

20º0'0"N

15º0'0"N

50º0'0"N

45º0'0"N

40º0'0"N

35º0'0"N

30º0'0"N

25º0'0"N

20º0'0"N

15º0'0"N

50º0'0"N

45º0'0"N

40º0'0"N

35º0'0"N

30º0'0"N

25º0'0"N

20º0'0"N

15º0'0"N

50º0'0"N

45º0'0"N

40º0'0"N

35º0'0"N

30º0'0"N

25º0'0"N

20º0'0"N

15º0'0"N

a b

c d

Different Cluster Assignment

Same Cluster Assignment

Environmental Change
(units in Euclidean distance)

0

0 - 0.01

0.01 - 0.5

0.5 - 1

1.0 - 1.6

1.6 - 5.2

Fig. 1 Quantitatively derived ecoregions from the Multivariate Spatio-temporal clustering of
edaphic, topographic and climatic variables for the People’s Republic of China and the magnitude
of environmental change under two climate scenarios. a Ecoregions under historical climatic
conditions (30-year average 1961–1990), b ecoregions for the 2050s time period (30-year average
2041–2070) under the HadCM3 A1FI scenario. Colors are consistent between ecoregions, c spatial
representation of the change in pixel cluster assignment (blue—no change; red—new cluster number)
between historical conditions and the 2050s time period (30-year average 2041–2070) under the
HadCM3 A1FI scenario, d the magnitude of environmental change, based on Euclidean distance,
from historical conditions to conditions for the 2050s time period (30-year average 2041–2070) under
the HadCM3 A1FI scenario
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by the PRISM climatology while the 2050 HadCM3 A1FI scenario represents one
potential future climate.

We found that changes in precipitation and temperature simulated by the 2050
HadCM3 A1FI scenario were sufficient to cause shifts in the spatial distribution of
the majority of ecoregions (Fig. 1a, b). Under the historical climate scenario, the
MSTC algorithm grouped 458 ecoregions. However, in the future time period, shifts
in bioclimatic variables resulted in the creation of 39 novel environmental conditions
and the loss of one historical ecoregion resulting in the formation of 496 unique
ecoregions.

Further analyses revealed that 60% of all pixels changed cluster or ecoregion
assignment with the simulated climatic change (Fig. 1c). We found that the values
for the magnitude of change ranged from 0 to 5.2 when we compared the historical
climate to the future under the 2050 HadCM3 A1FI scenario and were spatially
heterogeneous (Fig. 1d).

Results from the PCA of the ecoregion centroids showed that 74.8% of the
variation could be accounted for in the first three principal components (Table 1).
The loading pattern revealed that the first principal component was highly related
to temperature, while decreasing precipitation and soil fertility corresponded to the
second and third components, respectively.

Applying the Köppen–Trewartha classification to each pixel of the PRISM clima-
tology resulted in 18 climatic types (Fig. 2a). The Köppen–Trewartha classification
captures the broad scale climate patterns previously described Kottek et al. (2006)
and Trewartha and Horn (1980). However, due to the relatively high-resolution
climatic data used in this study, we were able to resolve climatic types for geograph-
ical settings such as the hot-dry valleys (BSh—arid shrubland and steppe climatic
type) of the Yarlong Tsangpo (Brahmaputra), Lancang (Mekong) and Jinsha (upper
Yangtze) Rivers (Chang 1981, 1983; Jin and Ou 2000) in the Tibetan Autonomous
Region and northwestern Yunnan Province (Fig. 2a).

Comparison of the MSTC clustered climatic types (Fig. 2b) with the PRISM
climatology (Fig. 2a) generally shows good general agreement in broad patterns
of climatic types. However, not all of the Köppen–Trewartha climatic types were
represented when we applied the classification to the average climate of the clustered
ecoregions (Fig. 2b and d). The tropical rainforest (Ar) was not present under
the historical climate scenario and neither the subtropical shrubland (BSh) nor
subtropical desert (BWh) types were represented under either scenario.

As with the comparisons above, the future scenarios (un-clustered and clustered)
showed broad-scale agreement in the spatial distribution of climatic types (Fig. 2c
and d). All climatic types represented in the historical PRISM climatology remained
in the un-clustered future HadCM3 A1FI scenario.

We chose a single ecoregion (cluster number 59) located in northeastern China to
demonstrate the effects of climatic change on the spatial distribution of ecoregions
and to test the assumptions that geographic stationarity of an ecoregion and small
values of the magnitude of change metric corresponds to refugia. Under the future
scenario, the spatial area of ecoregion 59 increased two-fold from ∼21.3 × 103 km2

(5,324 pixels) to ∼48.7 × 103 km2 (12,170 pixels) resulting mostly from a northern
shift in extent (red shading, Fig. 3). Additionally we found that pixels in the
future domain of the ecoregion 59 tended to be warmer and wetter as well as be-
ing distributed over a greater elevation range and less fertile, as measured by the
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Fig. 2 Spatial representation of Köppen–Trewartha climate classification for the People’s Republic
of China. a Climate classification of the historical climate for the individual cells of the PRISM
climatology (30-year average 1961–1990). b Climate classification of the clustered ecoregions under
historical climatic conditions (30-year average 1961–1990). c Climate classification of the individual
cells of the climate data for the 2050s time period (30-year average 2041–2070) under the HadCM3
A1FI scenario. d Climate classification of the 500 ecoregions for the 2050s time period (30-year
average 2041–2070) under the HadCM3 A1FI scenario. Differences between maps in the left and
right columns are due to the addition of edaphic and topographic factors as well as regional
generalization by Multivariate Spatio-Temporal Clustering (MSTC)

carbon to nitrogen ratio, when compared to the historical distribution of pixels
(Fig. 4). The majority of the core area (4,815 pixels) of this ecoregion, however,
remained geographically intact (blue shading, Fig. 3). Consequently, the amount of
environmental change, as represented by the magnitude of change metric, was equal
to 0.0 for these cells.

For the historical scenario, ecoregion 59 was classified climatically as type E, a
boreal climatic type (Fig. 2b), which is consistent with the current vegetation types
found in this region (Chen et al. 2003; Fang and Yoda 1989; Liu et al. 2003, 2006;
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Fig. 3 Change in spatial extent of ecoregion 59 under the historical climate (30-year average 1961–
1990) and the 2050s (30-year average 2041–2070) HadCM3 A1FI scenarios. Green represents areas
that occur only under the historical climate. Red represents areas that occur only under the future
scenario. Locations in blue indicate persistence of ecoregion and magnitude of change equal to 0

Yong and Feoli 1991). We found that the climatic variability within the entire spatial
domain of ecoregion 59 was represented by three climatic types (BSk—cold semi-
arid steppe, DCwb—cold temperate forest, and E—boreal forest). The majority of
the pixels (∼99%) were classified as the boreal climatic type (E) and had a median
elevational distribution of 803 m. The distributions of the other two types (DCwb and
BSk) represented fewer pixels and were usually found at lower elevations (Table 3).

Under the 2050 A1FI scenario the average climate over the entire future spatial
extent of the ecoregion became warmer and wetter (Fig. 4a and b). Consequently
the climatic type for the ecoregion switched from the E—boreal forest type to a cold
temperate forest type (Fig. 2d) with ∼51% of the pixels being classified as DCwb
(Table 3).

Analysis of the climatic variability within the ecoregion showed a shift in the
composition of the original climatic types (BSk, DCwb, and E) and the addition of a
warmer temperate forest type climate (DCwa) as well as DCfb, which represents a
cooler temperate forest with no distinct dry season. The new climatic type, DCwa,
represented approximately 47% of the northern latitudinal pixels in the future
distribution of the ecoregion (Table 3). The other three climatic types, BSk, DCfb,
and E, represented ∼2.5% of the total area. Although the number of pixels classified
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Fig. 4 Boxplots showing median, quartiles (25–75%), minima and maxima of mean annual temper-
ature (a), annual precipitation (b), elevation (c), and carbon to nitrogen ratio (d) for all pixels in
ecoregion 59 under historical and future (2050s HadCM3 A1FI) climate scenarios

Table 3 The number of pixels, elevational and latitudinal distribution of climatic types for the entire
spatial extents of ecogregion 59 under historical and future climate scenarios

Type Historical Future

Number Elevation (m) Latitude (◦N) Number Elevation (m) Latitude (◦N)
of pixels of pixelsMedian Range Median Range Median Range Median Range

BSk 29 258 187–794 44 44–48 222 672 541–794 48 48–49
DCfb 0 6 968 906–1,426 42 42
DCwa 0 5,703 755 500–1,140 49 47–52
DCwb 47 624 614–701 49 49 6,176 906 577–1,426 51 46–53
E 5,248 803 607–1,917 49 42–51 66 1,125 983–1,334 51 47–51
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Table 4 Comparison of the elevational distribution and number of cells (in parentheses) for each
climatic type contained in ecoregion number 59 under historical and future conditions where pixel
cluster assignment did not change

Type Future

Historical DCwa DCwb DCfb E

BSk 785 m (3)
DCwb 634 m (46)
E 780 m (3,601) 947 m (1,138) 1,039 m (4) 1,131 m (23)

as BSk—cold semi-arid steppe increased, the climatic type represented a small
fraction (1.8%) of the total area in the northern portions of the ecoregion.

When we examined the 4,815 pixels of ecoregion 59 that did not change cluster
assignment (blue shading, Fig. 3) we discovered only 23 pixels of the higher el-
evational boreal climatic type (E) were retained under the future climate forcing
scenario (Table 4). All other pixels were classified as a subcategory of a continental
temperate forest type (DC), which resulted from a significant shift (paired Wilcoxon
signed rank test, p < 0.001), from colder, drier to warmer, wetter climatic conditions
(Fig. 5).

4 Discussion and conclusions

4.1 Discussion

Unlike other approaches to ecoregional delineation (Bailey 1996; Omernik 1995)
by using the MSTC algorithm we were able to objectively define unique clusters
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Fig. 5 Boxplots showing median, quartiles (25–75%), minima and maxima of average temperature
(a) and annual precipitation (b) for all pixels in ecoregion 59 which persisted in the same spatial
location under historical and future (2050s HadCM3 A1FI) climate scenarios. The differences in
both average temperature (a) and annual precipitation were significant at p < 0.001 95% confidence
level using the paired Wilcoxon signed rank test
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or ecoregions to demonstrate how abiotic variables change through space and time
under a projected future climate forcing. Changes in climate by 2050, from projected
anthropogenic forcings, resulted in the creation of novel combinations of climate
and topo-edaphic factors. Moreover, as in other recent studies that demonstrated
the evolution of novel climates (Ohlemüller et al. 2006; Williams and Jackson 2007;
Williams et al. 2007) under future scenarios, the changes presented in this study were
sufficient to create environmental conditions that are not currently present anywhere
in China today. By using the MSTC approach to ecoregional delineation we are able
to provide some insight into the potential disruption of current habitat structure
and species distributions under future climatic change scenarios. To completely
analyze the impact of climatic shifts on distributions of plants and animals, stationary
topographic and edaphic factors must be considered in addition to strictly climatic
variables.

The Köppen–Trewartha classification provided an additional method for visual-
izing and interpreting how climate space and consequently vegetation space shifted
under a future scenario. Using this method we were able to document that the spatial
patterns of climatic change resulted in a northern migration of warmer climatic types
and an increase in the elevational limits of forests (Table 3) as well as a slight
expansion in the high latitude desert and arid shrubland regions in northwestern
China (Fig. 2c and d). These shifts were consistent with observations of impacts on
vegetation from recent climatic change (Baker and Moseley 2007; Diaz et al. 2003;
Gou et al. 2007; Gu et al. 2007) and future predictions from more process based
vegetation models (He et al. 2005; Leng et al. 2008; Song et al. 2004, 2005).

The k-means algorithm homogenizes and partitions the environmental variance
equally across each of the statistically derived ecoregions, such that each had similar
amounts of heterogeneity (Estivill-Castro and Yang 2004); thus we were able to com-
pare any two ecoregions for any given time period, as demonstrated by Hargrove and
Hoffman (2004). However, one of the main challenges with the k-means algorithm
lies in determining, a priori, a suitable number of clusters (Estivill-Castro and Yang
2004). For example, choosing a relatively small number of clusters (k) can result in
the failure to discriminate small unique areas as regions separate from their larger-
scale “parent” ecoregions.

The influence of the size of k became obvious when we applied the Köppen–
Trewartha classification to the 500-cluster data set. Even though we were able to
reproduce the broad spatial pattern of climates existing in the un-clustered data in
both the historical and future scenarios (Fig. 2), three climatic types (Ar, BSh, and
BWh) were not represented in the clustered analysis. The reason for the omission
was that these three types (Ar, BSh, and BWh) represented a small percentage
(0.02%, 0.07%, and 0.005% respectively) of the total area and were not identified as
distinct ecoregions when the “within cluster” climate was averaged over the spatial
domain.

Clearly, the correspondence between the clustered and un-clustered climatic
types would have been better if more clusters (larger k value) had been chosen.
Requesting fewer clusters resulted in more broadly defined groups and allowed
for greater within-ecoregion environmental variation. A larger value of k-clusters
would have resulted in more rigorously defined homogenous ecoregions that would
have exhibited less within-region variability. We should note that regardless of the
k value, the statistical classification process was uniformly applied such that the
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environmental heterogeneity was equal across all ecoregions formed anywhere in
the maps.

The number of clusters also had a strong influence on the amount of intra-cluster
environmental variability in data space as demonstrated by the range of values for
mean annual temperature (−5.77◦C to 5.66◦C) and annual precipitation (318 mm to
1234 mm) within ecoregion 59 (Fig. 4). By using the Köppen–Trewartha classification
scheme we were able to meaningfully bound that variability thus showing change in
the potential distribution of habitats.

In general, ecoregion 59 was classified as a northern (∼42◦N–53◦N) forested
ecoregion that had a wide elevational range. The amount of variation in climatic
data space for the ecoregion was large enough to range from a cold high latitude
steppe/shrubland (BSk) to boreal forest (E) climatic types (Table 3). Furthermore,
when we examined how the variability was partitioned between the historical and
future scenarios, we found that the climatic characteristics of the ecoregion were
quite different. In fact the ecoregion became more environmentally diverse under
the future scenario (Table 3). More importantly, even though the amount of intra-
cluster environmental variance for the pixels of ecoregion 59 did not cross a statistical
threshold which would push them into another cluster, the amount of internal
variation was sufficient for nearly all the pixels to cross a climatic threshold according
to Köppen–Trewartha, demonstrated by the shift of three climatic types to five
climatic types (Table 3), thus possibly increasing the number of potential habitats
within the ecoregion.

The three historical climatic types (BSk, DCwb, and E) that did persist into the
future were spatially distributed in the higher elevational and latitudinal regions of
ecoregion 59 (Table 3). Additionally, only 23 of the original 5,248 pixels that were
classified as a boreal forest type were able to persist in the same spatial location
(Table 4). This clearly indicates that the majority of species currently found in this
ecoregion would be displaced and forced to migrate to new locations, forced to adapt
to the new environmental conditions, or become locally extinct.

Saxon et al. (2005) maintained that the areas of greatest risk from climatic change
are locations where domains disappear and different domains take their place.
However, looking simply at domain stability, either “in situ” or by the magnitude of
change metric may not be sufficient to guarantee the persistence of species or habitats
as we have shown for ecoregion 59 (Table 4). Even though the historical extent of the
ecoregion remained largely intact, changes in temperature and precipitation regimes,
as defined by Köppen–Trewartha, suggested projected life-form level changes. If the
ecological amplitude of native species is presumed stationary, then the assumption
that species in this portion of the ecoregion will be least at risk or provide potential
refugia from climatic change does not hold as maintained by Saxon et al. (2005) given
the number of ecoregions (k = 500) used in the study.

As we stated above, the number of clusters or division influenced the amount
of environmental variability that was distributed within each ecoregion. Choosing
too few clusters (small values of k) or “under dividing” would homogenize the total
amount of environmental variation across fewer ecoregions, as may have been the
case with Saxon et al. (2005), would result in the conclusion that climatic refugia
would exist for a particular species or assemblage when in fact they did not thus
resulting in a Type I error. Conversely, “over division” (larger values of k) would
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result in the conclusion that there were no refugia when in fact there were, a Type II
error. In this case, a species’ range might have been adequately represented by
multiple quantitative ecoregions, any one of which could have provided adequate
habitat. In climatic shift analyses such as the one performed here or in Saxon et al.
(2005), the Type I error has more severe consequences since the suggestion of refugia
may cause unjustified assurance of a species’ persistence. Therefore, selecting larger
values of k would provide a more conservative strategy for identifying potential
refugia and the conservation of species.

Additionally we suggest that using the Köppen–Trewartha classification can be
used as an incomplete, partial “yardstick” to ensure that enough regions have been
created to adequately discriminate the level of climatic variation relevant to plant and
animal species. Because most of the environmental variability, which loaded on the
first two rotated factors (Table 1), was in terms of climatic variability (temperature
and precipitation respectively) one can assume that, once these are satisfied by the
level of division, so will the other non-climatic variables included in the MSTC. The
regionalization of present and future China produced here appears to be slightly
coarser than the divisions utilized in Köppen–Trewartha (Fig. 2a and b), and so
may be slightly insufficient. We believe that the regionalization of China would
compare favorably with Köppen–Trewartha if it were repeated with 800 to 1,000
ecoregions. There is little cost (other than computation time) to over dividing beyond
this critical level of discrimination; the additional division would merely result in a
one-to-many relationship between the range of a particular animal or plant and the
resulting quantitative ecoregions, as opposed to the minimum resolution of a one-to-
one relationship.

4.2 Conclusions

The use of clustering methods, like ecoregions themselves, assumes that applying
a certain optimum level of generalization provides some measure of value. The
value may stem from increased understanding of ecological conditions that is made
possible by dividing a multivariate set of conditions into a discrete set of kinds or
types of environments such as those in the Köppen–Trewartha classification. It may
be easier to recognize, understand, and remember that certain sets of plants and
animals can be associated with each of these environmental types. Recognition of
such simplified environmental sets should aid in the conservation of these associated
plants and animals.

As with all generalizations, however, scrutiny at sufficiently fine resolution may
reveal fine scale details that have been homogenized together. Such a tradeoff
between simplicity and generalization must be optimized. Thus the results from our
study suggest that a two-step process may be necessary for determining the ecological
impacts of predicted climatic change. The Köppen–Trewartha classification alone
is insufficient for determining ecological regions, since it does not consider non-
climatic factors in defining potentially suitable habitat. For example, it produces
fewer environmental groups than the 500 quantitative ecoregions produced by the
MSTC. However, the Köppen–Trewartha classification has been refined so that it
produces a level of generalization that is congruent with the level of discrimination
used by ecologists when they examine plant and animal associations.
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We suggest that when the MSTC is used, at a particular level of k-divisions,
to produce an initial environmental stratification, a subsequent application of the
Köppen–Trewartha classification should then be used to ensure that all major and
minor ecologically relevant climate groupings have been successfully discriminated.
If not the MSTC procedure should be repeated, requesting a greater number of k
groups. In this way, the ecological impact analysis can be ensured to have sufficient
resolution to discern all climatic combinations presently recognized as ecologically
relevant. Only then should the analysis proceed to estimate the ecological impacts of
the forecasted climatic shift.

Our new findings suggest that the ecological impacts of climatic shifts may be more
severe than originally suggested by Saxon et al. (2005). Because their continental
scale analyses was based only on 500 clusters, their analysis may have included gen-
eralizations that lumped together ecological differences that may have been relevant
for the survival of species following the climatic shifts. This level of generalization
may have caused Saxon et al. (2005) to overestimate the number and extent of
refugia for plants and animals in the United States; therefore, underestimating the
severity of the impacts from projected climatic change. Repeating their analysis with
additional levels of division, followed by testing with Köppen–Trewartha to assure
that an ecologically sufficient level of climatic discrimination remains, could produce
a more accurate estimate of potential ecological impacts to guide future conservation
efforts.

Understanding the appropriate level of ecoregional resolution is of paramount
importance when interpreting the results of broad climatic change impact analyses
like Saxon et al. (2005). A continental scale analysis, while able to generally locate
potentially static refuges or reserves, may still be insufficient to define the position of
those reserves at a cell-by-cell scale. The level of ecoregional generalization, as set
in this study, may be such that few specific individual locations remain unaffected by
the climatic shift. As the number of resolved ecoregions increases, however, the value
of the ecoregional generalization decreases and the computation load increases. The
prognostic ability of climatic change science at its current state of maturity may be
insufficient to accurately provide such high-resolution forecasts.

In summary, the MSTC algorithm provides conservation planners with a robust
alternative for delineating dynamic ecoregional boundaries. When these statisti-
cally defined boundaries are related to ecological threshold responses, such as the
Köppen–Trewartha schema used in this paper, then a meaningful classification of the
physical characteristics of the ecoregions can be developed, thus providing insights
into species persistence and aiding in the development of conservation networks in
an uncertain future.
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