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USING MULTIVARIATE CLUSTERING
TO CHARACTERIZE ECOREGION

BORDERS

The authors’ clustering technique unambiguously locates, characterizes, and visualizes
ecoregions and their borders. When coded with similarity colors, it can produce planar map
views with sharpness contours that are visually rich in ecological information and represent
integrated visualizations of complex and massive environmental data sets.

cologists have long used massive data
sets as the basis for visualizing eco-
region maps."? Ecoregions are areas
containing similar environmental con-
ditions that are classified for particular purposes.
For example, the US Department of Agriculture
publishes a map of Plant Hardiness Zones, which
divides the US into different ecoregions so that
gardeners can select appropriate plants and
shrubs for their particular area. The ecoregion is
one of the most important concepts in managing
and understanding landscape ecology.** Unfor-
tunately, ecologists have long struggled with ex-
actly how and where to locate the dividing lines
between ecoregions.’®
Historically, the process of regionalization—
drawing ecoregion borders—has been subjec-
tive: experts have attempted to integrate and
weigh all of the environmental characteristics
and draw the borders accordingly, often without
being able to elucidate the logic behind their
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lines. This subjectivity leads to frequent revi-
sions’® and disagreements over particular loca-
tions,” and hampers widespread acceptance and
use of such maps. Some experts, in fact, are un-
able to correctly identify actual ecoregion maps
from synthetic maps simulated using a fractal
technique.!”

Part of the problem is the variable nature of
the borders between ecoregions. Some borders
are very sharp and distinct, and you can literally
stand with your feet in two clearly different re-
gions. Ecologists call such unequivocal and easy-
to-locate borders ecotones, because they represent
sharp cuts. However, most borders are more like
the M.C. Escher woodcut Sky and Water I
(www.cs.rochester.edu/u/si/images/escher/birds_fish.
gif), in which black birds slowly transform into
white fish. Although the picture clearly contains
two distinct creatures, it’s difficult to locate a line
of demarcation between them. We define a new
term, ecopause, to indicate the indistinct nature
of such borders. But a border may actually
change character along its length. For example,
a border can begin in one geographic location
as an ecotone and transform slowly along its
length into an ecopause. Unfortunately, ecolo-
gists have had only simple lines with which to
visualize these many types of borders.

Locating ecoregion borders is a multivariate
decision process that must consider a large geo-
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graphic data set for each of multiple environ-
mental conditions. We have developed an ob-
jective technique called Multivariate Geographic
Clustering, which objectively computes border
placement between ecoregions, given maps of all
environmental conditions under consideration.
Our technique lets us locate and visualize eco-
region borders, and portray the instantaneous
sharpness of those borders at every point along
the line. Here, we present our technique and of-
fer sample visualizations.

Multivariate Geographic Clustering

Rather than relying on expertise, Multivariate
Geographic Clustering uses standardized values
for each selected environmental condition in a
map’s individual raster cells as coordinates that
specify the cell’s position in environmental data
space. The number of dimensions in data space
equals the number of environmental character-
istics. Two raster cells with similar environmen-
tal characteristics from anywhere in the map will
appear near each other in data space; their close-
ness and relative position quantitatively reflects
environmental similarities.

Our algorithm disassembles the map cells from
geographic space and uses the standardized value
of each of the environmental characteristics as
coordinates to replot the cells in environmental
data space. Because the density of cells in data
space is variable, we use an iterative classification
procedure to group nearby cells into clusters
based on similar environmental conditions.

"To begin the process, the user specifies the de-
sired number of clusters. The initial part of the
algorithm then examines observations sequen-
tially to find the most widely separated set of
cells that will constitute the initial cluster
“seeds.” Each map cell is then compared against
all cluster seeds and assigned membership in the
cluster closest to it in terms of Euclidean dis-
tance. After all map cells are assigned, new clus-
ter centroids are calculated as the mean of each
coordinate in the cluster. At this point, the iter-
ative assignment procedure repeats. Cells do not
move in environmental data space; rather, the
cluster centroids slowly migrate until they
achieve equilibrium. When fewer than a speci-
fied number of map cells change cluster assign-
ments in a particular iteration, the process halts.

Figure 1 shows a visualization of 3,000 clusters
in a 3D data space representing the US. In this

Figure 1. A visualization of 3,000 clusters in a 3D data space repre-
senting the United States. The number of member cells determines
the cluster icon’s size and color.

case, the three dimensions are the first three prin-
cipal component scores resulting from nine envi-
ronmental characteristics (we discuss this in more
detail later). Because showing individual map cells
would obscure the view entirely, we show clusters
instead. Cluster icons are sized and colored based
on the number of member cells. Clusters with the
largest membership tend to be centrally located
in data space; cluster sizes follow a negative expo-
nential distribution. Because the procedure gen-
erates clusters with nearly uniform variance in a
cluster, the actual radius of all clusters is nearly
equal, regardless of membership.

Map cells with their final cluster assignments
are then reassembled into their proper geo-
graphic positions, and the resultant ecoregion
map can be color-coded by cluster assignment.
Because adjacent raster cells are likely to have
similar environmental values, ecoregion clusters
are often geographically contiguous. However,
because the geographic location is not used for
clustering, clusters can be spatially disjoint, and
two map cells with similar environments could
be classified in the same ecoregion even though
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Figure 2. Using nine environmental conditions, the Multivariate Ge-
ographic Clustering technique segregated the continental US into
50 distinct ecoregions, represented by randomly assigned colors.

they are widely separated geographically. For ex-
ample, two widely spaced but environmentally
similar mountaintops could be classified in the
same ecoregion cluster.

Implementation

We have implemented Multivariate Geographic
Clustering in a parallel algorithm coded in C us-
ing the Message Passing Interface. Our code is
dynamically load-balancing and fault-tolerant,
and it performs both initial seed-finding and it-
erative cluster assignment in parallel. The clus-
tering algorithm is inherently parallelizable, be-
cause individual nodes can independently classify
a portion of all cells, and then combine results
at the end of the iteration.

We developed the Multivariate Geographic
Clustering parallel algorithm and code on a highly
heterogeneous Beowulf-class parallel machine
constructed from surplus 486- and Pentium-based
PCs. This 128-node “Stone SouperComputer” is
described elsewhere'' and online at www.esd.ornl.
gov/facilties/beowulf.

We performed many empirical regionaliza-
tions for the conterminous US at one-square-
kilometer resolution for up to nine environ-
mental characteristics'>!* and have divided the
US into as many as 7,000 distinct ecoregions.'*
At this resolution, each of the nine US environ-
mental-condition maps comprises more than 7.8
million cells. This map, data, and ecoregion res-
olution surpasses what ecoregion experts usually
accomplish.

The example US ecoregions we show here are
from a Multivariate Geographic Clustering at a

resolution of four square kilometers on nine
particular environmental characteristics impor-
tant to plant growth. The environmental char-
acteristics we considered included elevation,
slope, soil bulk density, mineral soil depth, bed-
rock depth, mean annual temperature, mean an-
nual precipitation, soil water-holding capacity,
and mean annual solar insolation, including
cloud interception.

Ovur first principal-component analysis grouped
soil density, soil depth, and bedrock depth into a
principal component encompassing soil factors.
The second PCA grouped temperature and pre-
cipitation, and inverse elevation and slope. The
third PCA grouped solar insolation and inverse
soil water-holding capacity. We used the three
principal components as the axes for the envi-
ronmental data space and the basis for this
ecoregionalization.

Figure 2 shows the resulting map of the con-
terminous US, which is divided into 50 distinct
ecoregions based on the nine environmental
conditions and identified by randomly assigned
colors. Although this map contains about half a
million cells, each with nine characteristics, par-
allel Multivariate Geographic Clustering can ef-
ficiently handle much larger problems.

Color-coding similarities

Visualizing ecoregions with random colors em-
phasizes the location of the borders. However,
ecologists might also want to see the relative mix
of conditions in bordering ecoregions. Because
the cluster centroid’s final location is, by defini-
tion, central, its coordinates describe the aver-
age ecological conditions in the cluster eco-
region. Comparing centroid coordinates from
two ecoregions quantifies the differences be-
tween the average environments in each.

If, through PCA, we condense numerous “raw”
environmental variables into three orthogonal
principal-component axes in the environmental
data space, we can perform a one-to-one scalar
mapping of the first, second, and third principal
component scores to a red-green-blue (RGB)
color triplet. In this way, we can combine the
three coordinates for each cluster centroid to
specify a unique color for that ecoregion. Under
this similarity-colors scheme, each ecoregion’s
color indicates the relative mix of each environ-
mental factor. Comparing adjacent ecoregions is
thus simple: ecoregions of similar colors have
similar environments.

Figure 3 shows Figure 2’s ecoregions using the
similarity-colors scheme. With Figure 2’s ran-
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dom-colors scheme, all intervening borders are
easily seen. However, with the new RGB simi-
larity colors, the borders between some adjacent
and similar ecoregions nearly disappear. The
map thus becomes a gradient of slowly changing
colors that quantitatively reflect the mix of en-
vironmental conditions found at each point. In
Figure 3, green, blue, and red represent the
three factors: soil properties, temperature and
precipitation, and solar and water-holding ca-
pacity, respectively. Black results from small but
balanced values of all factors, and white from
large but balanced values of all factors. Thus,
white areas in Florida, Texas, and California’s
Central Valley reflect high solar insolation, low
water-holding capacity, high bulk density, deep
soils and bedrock, high temperature and precip-
itation, low elevation, and gentle slopes.

RGB-encoded similarity-colors maps con-
verge rapidly to show the same large regional
trends in ecological relationships. For example, if
two ecoregionalizations are produced from the
same environmental conditions, but one is di-
vided finely into many ecoregions while the
other is divided coarsely into relatively few, the
similarity-colors versions of each very different
map will be indistinguishable from each other.
"This convergence occurs despite the fact that the
polygons underlying each map are completely
different—only the RGB coding technique is the
same. Thus, beyond some minimum number of
ecoregions, the same regional ecological patterns
are revealed regardless of the number of ecore-
gion divisions.

Gauging representativeness
To characterize the sharpness of the borders, we
must be able to quantify representativeness: how
representative a particular location is of the par-
ent ecoregion. As we described earlier, each clus-
ter’s final centroid is the best single way to rep-
resent that cluster ecoregion because it represents
the arithmetical average of all member cells. Map
cells that are in the cluster’s interior, close to the
mean centroid, are highly representative of this
ecoregion; map cells in the cluster’s outer “shell”
are less representative. These outlying cells are
the ones that might change cluster assignments
in another iteration of the classifying algorithm.
Given this, we quantify representativeness by
measuring the Euclidean distance from each cell
to its assigned cluster’s centroid. We can thus
compute a representativeness value for all map
locations. Also, because more ecoregions mean
more (and closer) centroids, the metric takes the

Figure 3. A similarity color scheme of the US ecoregions shown in
Figure 2. Factor 1 (soil properties), is shown in green; factor 2 (tem-
perature and precipitation) in blue; and factor 3 (solar and water
holding) in red. Black represents regions where there are small, but
balanced values of all factors; white represents areas in which there
are large but balanced values of all factors.

number of ecoregion divisions into account.
Cells close to their centroids are always more
representative of their cluster ecoregions than
outlying cells.

Defining elevation

If we map the distance from each cell to its cluster
centroid back into geographic space and depict
these values as elevations, we can create a surface
whose height inversely corresponds to the cell’s
representativeness at that geographic location.
Because we can calculate such a value for all cells,
this representativeness surface will be complete
and continuous across the map. This theoretical
elevation surface reflects representativeness, and
represents something different from the locations’
actual topographic elevations.

In such an elevation surface, idealized hypo-
thetical cluster ecoregions would appear as a series
of depressions or craters, with border regions
tracing along the tops of the crater rims. The
crater’s deepest spots would correspond with cells
at or near the cluster’ centroid, representing the
lowest geographic locations.

Edge characteristics

We use elevation profile cross-sections to char-
acterize adjacent borders, which can be sharp,
fuzzy, or a combination of the two. For example,
a border might be steep-sided and “U”-shaped,
with sharp borders characteristic of an ecotone,
or it might descend more gradually, in a “V”
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Figure 4. Using contour lines, we can visualize borders that are (a) sharp on both sides, (b) fuzzy on both sides, and (c)
mixed. We can also represent (d) borders that change sharpness characteristics along their length.

shape, characteristic of an ecopause. Also, be-
cause edge properties are dependent on each ad-
jacent cluster, each side has distinct (and possibly
different) properties. Although initially coun-
terintuitive, this “sidedness” property is logical,
given that we are characterizing the transition
from the border to the centroid independently
on each side. Thus, for example, a border might
be sharp on one side and fuzzy on the other.

"To visualize border sharpness, we use contour
lines. As Figure 4 shows, closely spaced contours
reflect steep sides and therefore a sharp ecotone;
widely spaced contours indicate gradually slop-
ing crater walls and a fuzzy, gradual ecopause.
We can also represent borders that change from
fuzzy to sharp or vice versa, as the figure shows.

Visualization examples

We have used our clustering technique to produce
ecoregion maps for many areas. Here we examine
in detail ecoregions and borders from the south-
eastern US and southern and central California.
Full-size high-resolution versions of these visual-
izations, along with other examples, are available
online at www.esd.ornl.gov/~bnw/borders.

Figure 5 shows a 3D visualization of the rep-
resentativeness surface for Alabama, southwest
Georgia, and northern Florida. Each square in
the mesh represents a single four-square-kilo-
meter raster cell; we find the cell’s elevation by
measuring the Euclidean distance between it and
the centroid of its cluster. Cluster membership
is shown in Figure 5 as the (random) color of

Figure 5. Representativeness topography for
Alabama (upper left), southwest Georgia (upper
right), and northern Florida. Ecoregions are
shown as random colors.

Figure 6. Southeastern ecoregions represented
with equal-elevation contours draped onto the
representativeness surface to visualize the sharp-
ness of the ecoregion borders.
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each cell. The representativeness topography is
continuous and interpretable at this resolution.

The region’s major cities (Atlanta, Macon, and
Columbus) are shown as a discontinuous purple
urban cluster. From west to east, four rivers (the
Flint, Ocmulgee, Oconee, and Ogeechee) are
seen as linear extensions of central Georgia’s
kelly-green piedmont ecoregion, flowing into
the state’s red coastal plain. In southern Al-
abama, the red coastal plain and kelly-green
piedmont ecoregion colors interdigitate, show-
ing single cells of red within green and vice
versa. The light-green southwestern Appalachi-
ans pass through northeast Georgia into eastern
Alabama. In northwestern Alabama, the olive-
drab ridge-and-valley ecoregion forms a higher-
elevation representativeness plateau.

Figure 6 shows equal-elevation representative-
ness contours visualizing the sharpness of these
ecoregion borders. In southern Alabama, the con-
tours’ random orientation and meandering char-
acter near the red coastal plain and kelly-green
piedmont ecoregions clearly indicate that this bor-
der is an ecopause. In contrast, northern Alabama’s
closely-spaced, parallel contour lines separating the
kelly-green piedmont from the olive-drab ridge-
and-valley represent this border as a sharp ecotone.

Figure 7 shows the same southeastern eco-
regions using the RGB-encoding similarity scheme
with border sharpness contours. Although the col-
ors appear to simply reflect the elevations, they are
actually derived from the centroid coordinates
from each ecoregion. Abrupt color changes are ac-
companied by the numerous parallel contours of

an ecotone, while subtle color changes are accom-
panied by the meandering contours of an eco-
pause. In a smaller region such as this, colors cor-
relate with height; however, distant locations with
equal representativeness elevations might have
substantially different environment colors. Once
we interpret the sharpness contour lines, we can
create a simple plan-view map with random ecore-
gion colors (see Figure 8) that adequately captures
both the location and the characteristics of ecore-
gion borders. Dense adjacent contours create thick
black lines along sharp ecotone borders.

Figure 9 shows a hallucinogenic planar view
of California from Los Angeles to San Francisco.
The representation uses sharpness contours and
randomly selected ecoregion colors. San Fran-
cisco Bay can be seen at the upper left; the San
Joaquin Valley is represented as a purple eco-
region in the north and a gray ecoregion in the
south. Figure 10 shows the jagged topography
as a mesh, again with randomly selected ecore-
gion colors. The Coastal Range appears to the
west and the Sierra Nevada mountains to the
east, separated by the much flatter and more rep-
resentative San Joaquin Valley. As the meander-
ing sharpness contours in Figure 11 show, there
is little representativeness difference between the
northern purple and southern gray ecoregions
of this valley. Figure 12 shows similarity colors
based on the nine environmental characteristics;
the flat yellow plateau at the upper right is Mono
Lake. This body of water is relatively homoge-
neous, and substantially different from the sur-
rounding land ecoregions.

Figure 7. Southeastern ecoregions colored by sim-
ilarity, with border sharpness contours. Parallel
contour lines indicate the sharp ecotone border
between Northern Alabama’s piedmont and
ridge-and-valley regions.

Figure 8. Plan view of southeastern ecoregions
with random colors and representativeness con-
tours. Dense adjacent contours create thick black
lines along sharp ecotone borders.
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Figure 9. A hal-

lucinogenic
planar view of
ecoregions in
southern and
central Califor-
nia, using
sharpness con-
tours and ran-
domly selected
ecoregion
colors.

Even at the national scale, careful application
of sharpness contours can reveal ecoregion pat-
terns. Plains in the southern and northwestern
US share a relatively gentle topography, although
their environmental characteristics differ, as in-
dicated by the different similarity colors in Fig-
ure 13. The transitions between such zones are
represented by gradual ecopauses. Sharper, eco-
tone-type boundaries are shown in mountainous
regions and much of the western US.

haracterizing ecoregion borders is

important for more than just ecolog-

ical understanding. Border movement

at fuzzy edges can be the first de-
tectable evidence of climate change. Character-
izing borders can also facilitate comparisons
among alternative ecoregionalizations. For ex-
ample, differences in the location of sharp edges
are more significant than different placements
of fuzzy edges.

Visualizations such as those we show here can
also provide a way to inspect the appropriate-
ness of geographic clustering. For example, the
appearance of multiple low areas within a single
cluster ecoregion might suggest that you need
more divisions, whereas borders passing through
low areas might suggest you need fewer.

It is human nature to attempt to impose order

Figure 10. California ecoregions represented as a
mesh draped over a representativeness topogra-
phy, again using randomly selected colors.

Figure 11. Sharpness contours show little diff-
erence between the northern part of the San
Joaquin Valley (purple) and the southern part

(gray).

Figure 12. Visualization of California ecoregions
using similarity colors based on nine environmen-
tal characteristics.
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by drawing lines to divide and categorize. The
problem is that the world is full of Escher-like
gradients. Our Multivariate Geographic Clus-
tering technique helps not only to draw the lines,
but also to characterize the sharpness of the bor-
ders that they represent. &
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